ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Young Members Group
The Young Members Group works to encourage and enable all young professional members to be actively involved in the efforts and endeavors of the Society at all levels (Professional Divisions, ANS Governance, Local Sections, etc.) as they transition from the role of a student to the role of a professional. It sponsors non-technical workshops and meetings that provide professional development and networking opportunities for young professionals, collaborates with other Divisions and Groups in developing technical and non-technical content for topical and national meetings, encourages its members to participate in the activities of the Groups and Divisions that are closely related to their professional interests as well as in their local sections, introduces young members to the rules and governance structure of the Society, and nominates young professionals for awards and leadership opportunities available to members.
Meeting Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
July 2025
Fusion Science and Technology
Latest News
DOE extends Centrus’s HALEU production contract by one year
Centrus Energy has announced that it has secured a contract extension from the Department of Energy to continue—for one year—its ongoing high-assay low-enriched uranium (HALEU) production at the American Centrifuge Plant in Piketon, Ohio, at an annual rate of 900 kilograms of HALEU UF6. According to Centrus, the extension is valued at about $110 million through June 30, 2026.
V. V. Verbinski, C. G. Cassapakis, W. K. Hagan, G. L. Simmons
Nuclear Science and Engineering | Volume 75 | Number 2 | August 1980 | Pages 159-166
Technical Paper | doi.org/10.13182/NSE80-A21305
Articles are hosted by Taylor and Francis Online.
The importance of gamma-ray reactions [(γ,f), (γ,γ′), and (γ,n)] that can interfere with the detection of certain threshold neutron reactions [(n,f), (n,n′), and (n,2n)] used in reactor pressure vessel dosimetry was studied via a combined experimental and calculational program. First, an experiment-design calculation of such photocontamination was carried out in a pool-type reactor, indicating ∼0.1% photointerference at the reactor surface and ∼10 000% at 1-m penetration of water (∼1% neutron attenuation/mm). Next, a complete set of threshold activation foils was irradiated fore and aft of a “photofraction gauge,” a tungsten disk that attenuated the important 5- to 10-MeV gamma rays by a factor of ∼30 and the >0.5-MeV neutrons by a factor of ∼3. The photofraction gauge was calibrated for photofraction fγ, by comparing the large fore to aft activation ratios [R(F/A)] for photocontamination foils with R(F/A) ≃ 3 for noncontamination foils [such as 58Ni(n,p) and 27Al(n,α)]. The values of fγ were calculated and were found to agree reasonably well with those measured, except that the calculated values were a bit too high. The one-dimensional calculation needs to be replaced with an accurate three-dimensional calculation with measured power distribution before accurate (γ,f) and (γ,γ′) cross-section adjustments can be made for the activation foils and/or the gamma-ray production cross sections (from n,γ reactions near the reactor) properly modified. Some one-dimensional cylindrical calculations for pressurized and boiling water reactors are presented that predict up to 55% photocontamination at the pressure vessel wall when determined by the 232Th(n,f) reaction.