ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Leading the charge: INL’s role in advancing HALEU production
Idaho National Laboratory is playing a key role in helping the U.S. Department of Energy meet near-term needs by recovering HALEU from federal inventories, providing critical support to help lay the foundation for a future commercial HALEU supply chain. INL also supports coordination of broader DOE efforts, from material recovery at the Savannah River Site in South Carolina to commercial enrichment initiatives.
D. C. Larson, G. L. Morgan
Nuclear Science and Engineering | Volume 75 | Number 2 | August 1980 | Pages 151-158
Technical Paper | doi.org/10.13182/NSE80-A21304
Articles are hosted by Taylor and Francis Online.
Differential cross sections for neutron-induced gamma-ray production from sodium have been measured for incident-neutron energies between 0.2 and 20.0 MeV. Gamma rays with energies 0.35 ≤ Eγ ≤ 10.6 MeV were detected with a sodium iodide spectrometer at 125 deg. The data presented are the double-differential cross section, d2σ/dΩdE, for coarse intervals in incident-neutron energy. The measured results are compared with existing data, with calculations based on multistep Hauser-Feshbach theory, and with a benchmark gamma-ray production measurement performed at the Oak Ridge Tower Shielding Facility (TSF). Average agreement between our measured results and model calculations is within 15%. The cross sections measured at the TSF are typically 30% larger than our results, except for gamma-ray energies between 1.1 and 1.5 MeV where the TSF benchmark predicts a yield 20 times greater than we observe. Results of the present measurement have been incorporated for the gamma-ray production in the Evaluated Nuclear Data File.