ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Reactor Physics
The division's objectives are to promote the advancement of knowledge and understanding of the fundamental physical phenomena characterizing nuclear reactors and other nuclear systems. The division encourages research and disseminates information through meetings and publications. Areas of technical interest include nuclear data, particle interactions and transport, reactor and nuclear systems analysis, methods, design, validation and operating experience and standards. The Wigner Award heads the awards program.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
M. M. R. Williams
Nuclear Science and Engineering | Volume 135 | Number 2 | June 2000 | Pages 123-140
Technical Paper | doi.org/10.13182/NSE00-A2129
Articles are hosted by Taylor and Francis Online.
A formalism has been developed for studying the transmission of neutrons through a spatially stochastic medium. The stochastic components are represented by absorbing plates of randomly varying strength and random position. This type of geometry enables the Feinberg-Galanin-Horning method to be employed and leads to the solution of a coupled set of linear equations for the flux at the plate positions. The matrix of the coefficients contains members that are random and these are solved by simulation. That is, the strength and plate positions are sampled from uniform distributions and the equations solved many times (in this case 105 simulations are carried out). Probability distributions for the plate transmission and reflection factors are constructed from which the mean and variance can be computed.These essentially exact solutions enable closure approximations to be assessed for accuracy. To this end, we have compared the mean and variance obtained from the first order smoothing approximation of Keller with the exact results and have found excellent agreement for the mean values but note deviations of up to 40% for the variance. Nevertheless, for the problems considered here, first order smoothing appears to be of practical value and is very efficient numerically in comparison with simulation.