ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Operations & Power
Members focus on the dissemination of knowledge and information in the area of power reactors with particular application to the production of electric power and process heat. The division sponsors meetings on the coverage of applied nuclear science and engineering as related to power plants, non-power reactors, and other nuclear facilities. It encourages and assists with the dissemination of knowledge pertinent to the safe and efficient operation of nuclear facilities through professional staff development, information exchange, and supporting the generation of viable solutions to current issues.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
DOE-EM awards $74.8M Oak Ridge support services contract
The Department of Energy’s Office of Environmental Management has awarded a five-year contract worth up to $74.8 million to Independent Strategic Management Solutions for professional support services at the Oak Ridge Office of Environmental Management site in Oak Ridge, Tenn.
W. Reed Johnson, Daniel H. Risher, James E. Rogers, William L. Thompson
Nuclear Science and Engineering | Volume 43 | Number 1 | January 1971 | Pages 32-41
Technical Paper | doi.org/10.13182/NSE71-A21243
Articles are hosted by Taylor and Francis Online.
Well-collimated beams of thermal-neutron-capture gamma rays from titanium and nickel, having average energies of about 6 and 8 MeV, respectively, were used to measure narrow-beam and total gamma-ray dose attenuation. Slab shields of lead, iron, and concrete were investigated for normal and oblique beam incidence. Total dose measurements were made by traversing an exposure-responsive detector through a plane behind and parallel to the shield. Monte Carlo and moments-method calculations were used to compare analytical and experimental total dose results. Good agreement was found for iron and concrete shields, but experimental results for the lead shield were higher than those predicted by the moments method by a factor of ∼1.2 for 6 MeV and ∼1.5 for 8 MeV. The reason for this disagreement is believed to be primarily bremsstrah-lung produced by energetic secondary electrons slowing down in lead.