ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Installations Safety
Devoted specifically to the safety of nuclear installations and the health and safety of the public, this division seeks a better understanding of the role of safety in the design, construction and operation of nuclear installation facilities. The division also promotes engineering and scientific technology advancement associated with the safety of such facilities.
Meeting Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
July 2025
Fusion Science and Technology
Latest News
WIPP’s SSCVS: A breath of fresh air
This spring, the Department of Energy’s Office of Environmental Management announced that it had achieved a major milestone by completing commissioning of the Safety Significant Confinement Ventilation System (SSCVS) facility—a new, state-of-the-art, large-scale ventilation system at the Waste Isolation Pilot Plant, the DOE’s geologic repository for defense-related transuranic (TRU) waste in New Mexico.
W. Reed Johnson, Daniel H. Risher, James E. Rogers, William L. Thompson
Nuclear Science and Engineering | Volume 43 | Number 1 | January 1971 | Pages 32-41
Technical Paper | doi.org/10.13182/NSE71-A21243
Articles are hosted by Taylor and Francis Online.
Well-collimated beams of thermal-neutron-capture gamma rays from titanium and nickel, having average energies of about 6 and 8 MeV, respectively, were used to measure narrow-beam and total gamma-ray dose attenuation. Slab shields of lead, iron, and concrete were investigated for normal and oblique beam incidence. Total dose measurements were made by traversing an exposure-responsive detector through a plane behind and parallel to the shield. Monte Carlo and moments-method calculations were used to compare analytical and experimental total dose results. Good agreement was found for iron and concrete shields, but experimental results for the lead shield were higher than those predicted by the moments method by a factor of ∼1.2 for 6 MeV and ∼1.5 for 8 MeV. The reason for this disagreement is believed to be primarily bremsstrah-lung produced by energetic secondary electrons slowing down in lead.