ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
DOE, General Matter team up for new fuel mission at Hanford
The Department of Energy's Office of Environmental Management (EM) on Tuesday announced a partnership with California-based nuclear fuel company General Matter for the potential use of the long-idle Fuels and Materials Examination Facility (FMEF) at the Hanford Site in Washington state.
According to the announcement, the DOE and General Matter have signed a lease to explore the FMEF's potential to be used for advanced nuclear fuel cycle technologies and materials, in part to help satisfy the predicted future requirements of artificial intelligence.
E. M. Sparrow, R. N. Koopman
Nuclear Science and Engineering | Volume 42 | Number 3 | December 1970 | Pages 406-414
Technical Paper | doi.org/10.13182/NSE70-A21227
Articles are hosted by Taylor and Francis Online.
A solution method for steady heat conduction in convectively cooled solids having temperature-dependent thermal conductivity is described and applied. The method provides solutions in algebraic form from which the temperature and its spatial derivatives can be evaluated at any point in the solid. To illustrate the application of the method, consideration is given to an internally heat-generating solid pierced by circular cooling passages. Results for the hot spot temperature are presented for a range of geometrical and thermal parameters. The results indicate a substantial influence of variable thermal conductivity when the temperature variation across the solid is large.