ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 8–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Japan gets new U for enrichment as global power and fuel plans grow
President Trump is in Japan today, with a visit with new Prime Minister Sanae Takaichi on the agenda. Takaichi, who took office just last week as Japan’s first female prime minister, has already spoken in favor of nuclear energy and of accelerating the restart of Japan’s long-shuttered power reactors, as Reuters and others have reported. Much of the uranium to power those reactors will be enriched at Japan’s lone enrichment facility—part of Japan Nuclear Fuel Ltd.’s Rokkasho fuel complex—which accepted its first delivery of fresh uranium hexafluoride (UF₆) in 11 years earlier this month.
R. E. Maerker, F. J. Muckenthaler
Nuclear Science and Engineering | Volume 42 | Number 3 | December 1970 | Pages 335-351
Technical Paper | doi.org/10.13182/NSE70-A21222
Articles are hosted by Taylor and Francis Online.
Measurements have been made at the Tower Shielding Facility of the spectra of secondary gamma rays arising from fast-neutron interactions in samples of natural iron, aluminum, copper, zinc, titanium, potassium, calcium, sodium, silicon, nickel, barium, sulfur, and a type-321 stainless steel. The absolute spectra are expressed as values of (Δ Eγ) = 4π d/dΩ (ΔEγ, 90 deg), where (ΔEγ) is the production cross section in millibarns averaged over an incident neutron spectrum from 1 to 14 MeV for 0.5-MeV wide gamma-ray intervals lying between approximately 1 and 6.5 MeV in gamma-ray energy. These data are intended primarily as integral checks on existing and future production cross-section sets which are differential in both the gamma-ray and neutron energy. Agreement with existing sets of data is adequate for iron, nickel, chromium, calcium, and aluminum. The agreement is fair to poor for the remaining elements where comparisons could be made.