ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Robotics & Remote Systems
The Mission of the Robotics and Remote Systems Division is to promote the development and application of immersive simulation, robotics, and remote systems for hazardous environments for the purpose of reducing hazardous exposure to individuals, reducing environmental hazards and reducing the cost of performing work.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
DOE-EM awards $74.8M Oak Ridge support services contract
The Department of Energy’s Office of Environmental Management has awarded a five-year contract worth up to $74.8 million to Independent Strategic Management Solutions for professional support services at the Oak Ridge Office of Environmental Management site in Oak Ridge, Tenn.
T. Lefvert
Nuclear Science and Engineering | Volume 42 | Number 3 | December 1970 | Pages 267-271
Technical Paper | doi.org/10.13182/NSE70-A21216
Articles are hosted by Taylor and Francis Online.
A multigroup, collision-probability, order-of-scattering approach is made to the slowing down solution of the neutron transport equation in a heterogeneous, non-multiplying medium with sources. Introducing first-collision probabilities in the Liouville-Neumann series solution of the neutron flux, the series may be summed and a transport matrix defined. If a flat source distribution in the region is assumed, this matrix is typical of the medium and of the geometrical configuration only and links, in an explicit way, sources and resultant fluxes. In a multiplying system without external sources it is also possible to use the above transport model when determining the effective neutron multiplication factor by the fission probability matrix method.