ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fusion Energy
This division promotes the development and timely introduction of fusion energy as a sustainable energy source with favorable economic, environmental, and safety attributes. The division cooperates with other organizations on common issues of multidisciplinary fusion science and technology, conducts professional meetings, and disseminates technical information in support of these goals. Members focus on the assessment and resolution of critical developmental issues for practical fusion energy applications.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
M. E. Congdon, R. W. Albrecht
Nuclear Science and Engineering | Volume 39 | Number 2 | February 1970 | Pages 207-214
Technical Paper | doi.org/10.13182/NSE70-A21200
Articles are hosted by Taylor and Francis Online.
A set of fundamental equations for fluctuations about the mean neutron density is studied for a reactor-detector system in which the detector is treated as an integral part of the system. The reactor-detector system is described, mathematically, as a general Markov process, and expressions for various descriptive parameters are derived in a consistent manner within the context of the basic equations. The role of the general adjoint neutron density is discussed with special emphasis on the mean and second-moment functions, and a relationship between the second-moment equations similar to the relationship between first-moments (mean and its adjoint) is observed. The extension to higher moments is also noted. A reduction of the second-moment equations is carried out, without approximation, using a variational principle. This consistent reduction allows a definition of the parameters involved, especially a definition of the detector efficiency, through a comparison of this reduced form with the usual point-reactor equations. The parameters defined contain weighting functions dependent upon the number of detectors used in the experiment.