ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Criticality Safety
NCSD provides communication among nuclear criticality safety professionals through the development of standards, the evolution of training methods and materials, the presentation of technical data and procedures, and the creation of specialty publications. In these ways, the division furthers the exchange of technical information on nuclear criticality safety with the ultimate goal of promoting the safe handling of fissionable materials outside reactors.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
June 2025
Fusion Science and Technology
Latest News
High-temperature plumbing and advanced reactors
The use of nuclear fission power and its role in impacting climate change is hotly debated. Fission advocates argue that short-term solutions would involve the rapid deployment of Gen III+ nuclear reactors, like Vogtle-3 and -4, while long-term climate change impact would rely on the creation and implementation of Gen IV reactors, “inherently safe” reactors that use passive laws of physics and chemistry rather than active controls such as valves and pumps to operate safely. While Gen IV reactors vary in many ways, one thing unites nearly all of them: the use of exotic, high-temperature coolants. These fluids, like molten salts and liquid metals, can enable reactor engineers to design much safer nuclear reactors—ultimately because the boiling point of each fluid is extremely high. Fluids that remain liquid over large temperature ranges can provide good heat transfer through many demanding conditions, all with minimal pressurization. Although the most apparent use for these fluids is advanced fission power, they have the potential to be applied to other power generation sources such as fusion, thermal storage, solar, or high-temperature process heat.1–3
M. E. Congdon, R. W. Albrecht
Nuclear Science and Engineering | Volume 39 | Number 2 | February 1970 | Pages 207-214
Technical Paper | doi.org/10.13182/NSE70-A21200
Articles are hosted by Taylor and Francis Online.
A set of fundamental equations for fluctuations about the mean neutron density is studied for a reactor-detector system in which the detector is treated as an integral part of the system. The reactor-detector system is described, mathematically, as a general Markov process, and expressions for various descriptive parameters are derived in a consistent manner within the context of the basic equations. The role of the general adjoint neutron density is discussed with special emphasis on the mean and second-moment functions, and a relationship between the second-moment equations similar to the relationship between first-moments (mean and its adjoint) is observed. The extension to higher moments is also noted. A reduction of the second-moment equations is carried out, without approximation, using a variational principle. This consistent reduction allows a definition of the parameters involved, especially a definition of the detector efficiency, through a comparison of this reduced form with the usual point-reactor equations. The parameters defined contain weighting functions dependent upon the number of detectors used in the experiment.