ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Radiation Protection & Shielding
The Radiation Protection and Shielding Division is developing and promoting radiation protection and shielding aspects of nuclear science and technology — including interaction of nuclear radiation with materials and biological systems, instruments and techniques for the measurement of nuclear radiation fields, and radiation shield design and evaluation.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
June 2025
Fusion Science and Technology
Latest News
High-temperature plumbing and advanced reactors
The use of nuclear fission power and its role in impacting climate change is hotly debated. Fission advocates argue that short-term solutions would involve the rapid deployment of Gen III+ nuclear reactors, like Vogtle-3 and -4, while long-term climate change impact would rely on the creation and implementation of Gen IV reactors, “inherently safe” reactors that use passive laws of physics and chemistry rather than active controls such as valves and pumps to operate safely. While Gen IV reactors vary in many ways, one thing unites nearly all of them: the use of exotic, high-temperature coolants. These fluids, like molten salts and liquid metals, can enable reactor engineers to design much safer nuclear reactors—ultimately because the boiling point of each fluid is extremely high. Fluids that remain liquid over large temperature ranges can provide good heat transfer through many demanding conditions, all with minimal pressurization. Although the most apparent use for these fluids is advanced fission power, they have the potential to be applied to other power generation sources such as fusion, thermal storage, solar, or high-temperature process heat.1–3
S. P. Tewari, L. S. Kothari
Nuclear Science and Engineering | Volume 39 | Number 2 | February 1970 | Pages 193-206
Technical Paper | doi.org/10.13182/NSE70-A21199
Articles are hosted by Taylor and Francis Online.
Calculations on the decay of a neutron pulse in H2O ice assemblies of various bucklings and at various temperatures in the range 273 to 21°K are reported. The scattering kernel is based on the Debye frequency distribution function of lattice vibrations, with a suitably chosen Debye temperature. Contributions from one- and two-phonon processes have been considered. The Boltzmann equation in the diffusion approximation has been solved both by an iterative procedure to obtain the fundamental mode of decay, and by a matrix diagonalization method. This latter method enables us to calculate neutron spectra at various times after the introduction of the neutron pulse. These time-dependent spectra have been compared with available experimental results with considerable success. By studying the time variation of the mean energy of the neutron distribution, we have calculated the slowing down relaxation times τth in ice at various temperatures and compared these with the measured values. We have also studied the heating up of a low-energy neutron pulse in ice assemblies at a few temperatures and find that, unlike the case of beryllium (Grover and Kothari) the heating up relaxation time τH comes out to be nearly the same as τth. The calculated values of diffusion coefficient D0, and diffusion cooling coefficient C at various temperatures have been compared with the experimental results. The agreement between the two sets of values is very good for D0, but not so good for C.