ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
DOE, General Matter team up for new fuel mission at Hanford
The Department of Energy's Office of Environmental Management (EM) on Tuesday announced a partnership with California-based nuclear fuel company General Matter for the potential use of the long-idle Fuels and Materials Examination Facility (FMEF) at the Hanford Site in Washington state.
According to the announcement, the DOE and General Matter have signed a lease to explore the FMEF's potential to be used for advanced nuclear fuel cycle technologies and materials, in part to help satisfy the predicted future requirements of artificial intelligence.
P. K. Doshi, George H. Miley
Nuclear Science and Engineering | Volume 39 | Number 2 | February 1970 | Pages 182-192
Technical Paper | doi.org/10.13182/NSE70-A21198
Articles are hosted by Taylor and Francis Online.
A subcritical assembly (29 × 38 × 29 cm) built of TRIGA-type fuel elements was pulsed by coupling it with the Illinois TRIGA reactor through a graphite thermal column (2 ft square by 4 ft long). Flux measurements were made at seven locations in four different fuel loadings—9, 16, 25, and 49 fuel elements—with keff varying from ∼0.4 to 0.92. A polynomial expansion method is used to provide a continuous representation of pulse shapes. Derivatives appearing in a diffusion-theory model, evaluated using this expansion, are then used to determine the propagation velocity and the neutronic parameters. The maximum “asymptotic” velocity (removed from the boundaries) varied from ∼4 × 104 cm/sec at keff = 0.60 to 2.54 × 104 cm/sec at keff = 0.92. The theoretical model involves an expansion which, depending on the number of terms retained, bounds the experimental data. However, differences of as much as 40% in absolute values are observed and they are attributed to inadequacies in the model for this small heterogeneous assembly. Uncertainties in the neutronic parameters, as well as nonlinearities in the instrumentation, may also contribute.