ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Aug 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
August 2025
Latest News
New coolants, new fuels: A new generation of university reactors
Here’s an easy way to make aging U.S. power reactors look relatively youthful: Compare them (average age: 43) with the nation’s university research reactors. The 25 operating today have been licensed for an average of about 58 years.
R. W. Brandon, J. C. Robinson, C. W. Craven, Jr.
Nuclear Science and Engineering | Volume 39 | Number 2 | February 1970 | Pages 151-162
Technical Paper | doi.org/10.13182/NSE70-A21195
Articles are hosted by Taylor and Francis Online.
The problem of determining neutron flux spectra through detector activation is of wide and continued interest in the nuclear industry. Analysis of this problem has historically been divided into two areas of concern. The first area is the evaluation of the perturbation introduced into the flux field by the detector. The second area is the determination of the unperturbed energy-dependent neutron flux from the integral relationship of neutron flux to detector activity. An expression was derived which relates detector activity to the unperturbed neutron flux and the adjoint difference flux through the use of a variational approach and a transport theory description of the system. The equation was cast in discrete ordinates formalism to permit numerical solution. The self-contained adjoint problem was solved using standard techniques. The unperturbed flux was expanded as a series of Laguerre polynomials, the coefficients of which were determined through inversion of the resulting rectangular matrix. The theoretical model was examined through application to several synthetic problems. A water-moderated spectrum was examined with both perturbed and unperturbed calculations. Direct calculation of perturbed activities showed good agreement with standard activity calculations. Comparable calculations of flux spectra with perturbed and unperturbed activities showed close agreement. The flux spectrum calculations yielded good results in the thermal energy range, and analysis showed that difficulties encountered in the epithermal range were due to the polynomial expansion scheme, as has been previously observed.