ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
DOE, General Matter team up for new fuel mission at Hanford
The Department of Energy's Office of Environmental Management (EM) on Tuesday announced a partnership with California-based nuclear fuel company General Matter for the potential use of the long-idle Fuels and Materials Examination Facility (FMEF) at the Hanford Site in Washington state.
According to the announcement, the DOE and General Matter have signed a lease to explore the FMEF's potential to be used for advanced nuclear fuel cycle technologies and materials, in part to help satisfy the predicted future requirements of artificial intelligence.
O. E. Dwyer, H. C. Berry
Nuclear Science and Engineering | Volume 39 | Number 2 | February 1970 | Pages 143-150
Technical Paper | doi.org/10.13182/NSE70-A21194
Articles are hosted by Taylor and Francis Online.
A theoretical study of fully developed heat transfer for in-line slug flow through unbaffled equilateral triangular bundles is reported. Results are given for the pitch: diameter range 1.05 to 2.00. Two sets of thermal boundary conditions have been considered: (a) uniform wall heat flux in all directions and (b) uniform wall heat flux in the axial direction and uniform wall temperature in the circumferential direction. For the first set, results on the circumferential variation of the wall temperature are given; and for the second, those on the circumferential variation of the wall heat flux are given. For both sets, average Nusselt numbers and circumferential variations of the local heat-transfer coefficients are also given. In all cases, the results are presented in the form of convenient dimensionless groups, and it is shown that they apply to, or can be used for, the estimation of the same dependent variables for turbulent flow of liquid metals through rod bundles. It has also been shown that for the P/D ratios and Peclet numbers normally employed in liquid-metal-cooled reactor cores, the ratio of the maximum temperature variation around a rod to the average wall-to-bulk temperature drop, in the case of uniform wall heat flux in all directions, is not greatly different for both slug and turbulent flows.