ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Aug 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
August 2025
Latest News
New coolants, new fuels: A new generation of university reactors
Here’s an easy way to make aging U.S. power reactors look relatively youthful: Compare them (average age: 43) with the nation’s university research reactors. The 25 operating today have been licensed for an average of about 58 years.
L. R. Bunney, D. Sam
Nuclear Science and Engineering | Volume 39 | Number 1 | January 1970 | Pages 81-91
Technical Paper | doi.org/10.13182/NSE70-A21173
Articles are hosted by Taylor and Francis Online.
Experimental measurements of the gamma-ray spectra emitted by the products of thermal-neutron fission of 235U have been made at nine selected times (¼, ½, 1, 2, 5, 10, 24, 48, and 72 h) after fission. A calibrated and highly collimated 5- × 5-in. NaI(T1) detector was used. The 100-energy-bin γ-ray spectra were unfolded from the pulse-height distributions by means of an iterative method. Extensive use was made of machine computation. The number of fissions in each sample was determined radiochemically. Significant differences between this work and calculated spectra were found. At the earlier times the experimental photon emission rate is higher than the calculated rate by as much as 40%. At later times the experimental rate is 20% lower than the calculated rate. Surprisingly large differences (as much as 33%) were found between the photon emission rates of products of fission by slow neutrons and by fast neutrons.