ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
DOE, General Matter team up for new fuel mission at Hanford
The Department of Energy's Office of Environmental Management (EM) on Tuesday announced a partnership with California-based nuclear fuel company General Matter for the potential use of the long-idle Fuels and Materials Examination Facility (FMEF) at the Hanford Site in Washington state.
According to the announcement, the DOE and General Matter have signed a lease to explore the FMEF's potential to be used for advanced nuclear fuel cycle technologies and materials, in part to help satisfy the predicted future requirements of artificial intelligence.
L. R. Bunney, D. Sam
Nuclear Science and Engineering | Volume 39 | Number 1 | January 1970 | Pages 81-91
Technical Paper | doi.org/10.13182/NSE70-A21173
Articles are hosted by Taylor and Francis Online.
Experimental measurements of the gamma-ray spectra emitted by the products of thermal-neutron fission of 235U have been made at nine selected times (¼, ½, 1, 2, 5, 10, 24, 48, and 72 h) after fission. A calibrated and highly collimated 5- × 5-in. NaI(T1) detector was used. The 100-energy-bin γ-ray spectra were unfolded from the pulse-height distributions by means of an iterative method. Extensive use was made of machine computation. The number of fissions in each sample was determined radiochemically. Significant differences between this work and calculated spectra were found. At the earlier times the experimental photon emission rate is higher than the calculated rate by as much as 40%. At later times the experimental rate is 20% lower than the calculated rate. Surprisingly large differences (as much as 33%) were found between the photon emission rates of products of fission by slow neutrons and by fast neutrons.