ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
August 2025
Latest News
From operator to entrepreneur: David Garcia applies outage management lessons
David Garcia
If ComEd’s Zion plant in northern Illinois hadn’t closed in 1998, David Garcia might still be there, where he got his start in nuclear power as an operator at age 24.
But in his ninth year working there, Zion closed, and Garcia moved on to a series of new roles—including at Wisconsin’s Point Beach plant, the corporate offices of Minnesota’s Xcel Energy, and on the supplier side at PaR Nuclear—into an on-the-job education that he augmented with degrees in business and divinity that he sought later in life.
Garcia started his own company—Waymaker Resource Group—in 2014. Recently, Waymaker has been supporting Holtec’s restart project at the Palisades plant with staffing and analysis. Palisades sits almost exactly due east of the fully decommissioned Zion site on the other side of Lake Michigan and is poised to operate again after what amounts to an extended outage of more than three years. Holtec also plans to build more reactors at the same site.
For Garcia, the takeaway is clear: “This industry is not going away. Nuclear power and the adjacent industries that support nuclear power—and clean energy, period—are going to be needed for decades upon decades.”
In July, Garcia talked with Nuclear News staff writer Susan Gallier about his career and what he has learned about running successful outages and other projects.
Frank McGirt, Martin Becker
Nuclear Science and Engineering | Volume 39 | Number 1 | January 1970 | Pages 56-66
Technical Paper | doi.org/10.13182/NSE70-A21171
Articles are hosted by Taylor and Francis Online.
The object of this investigation is to obtain qualitative and quantitative understanding of reentrant hole (or extraction channel) effects in pulsed thermal- and fast-neutron experimental assemblies. The calculational model used assumes slab geometry for the unperturbed (without the hole) situation and considers cylindrical reentrant holes of various diameters and depths. The two-dimensional nature of the hole is represented by a wall-streaming term which is used as a boundary condition for a reduced effective slab. The effective slab geometry is obtained by reducing the thickness of the original slab by an amount equal to the depth of the reentrant hole. The validity of this important simplification is confirmed by results of two-dimensional discrete ordinates transport calculations in which the reentrant hole is introduced explicitly. A second basic assumption used to simplify the numerical calculations is that the flux along the walls of the reentrant hole is adequately represented by the unperturbed flux. This approximation is judged valid by the success of the method in predicting experimental results. The analytical procedure is applied numerically using discrete Sn transport theory. Solutions are obtained from a code system which makes use of a standard production program DTF-IV as a subroutine for performing unperturbed and perturbed effective slab calculations. The calculational model yielded good predictions of the distorted fluxes for reentrant hole experiments performed on water at Rensselaer Polytechnic Institute. For fast neutron spectra, the model predicted distortions (particularly at high energies) which were significant but not large enough to limit the viability of the experiment.