ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Robotics & Remote Systems
The Mission of the Robotics and Remote Systems Division is to promote the development and application of immersive simulation, robotics, and remote systems for hazardous environments for the purpose of reducing hazardous exposure to individuals, reducing environmental hazards and reducing the cost of performing work.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
DOE-EM awards $74.8M Oak Ridge support services contract
The Department of Energy’s Office of Environmental Management has awarded a five-year contract worth up to $74.8 million to Independent Strategic Management Solutions for professional support services at the Oak Ridge Office of Environmental Management site in Oak Ridge, Tenn.
R. A. Rydin, R. J. Hooper
Nuclear Science and Engineering | Volume 38 | Number 3 | December 1969 | Pages 216-228
Technical Paper | doi.org/10.13182/NSE69-A21156
Articles are hosted by Taylor and Francis Online.
The crosscorrelation method of determining the impulse response of a dynamic system, which has been widely used in experiments, is applied numerically to a complicated mathematical model of a spatially dependent reactor system, and is concluded to be a practical alternative to analog computer analysis. The method is applied using two families of periodic discrete level signals as the input perturbation. It is demonstrated that a relatively new class of signals, having three possible levels, which has had very limited use to date, leads to a more accurate determination of the impulse response in the presence of strong system nonlinearities than do the better known and more widely used binary signals.