ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
AI at work: Southern Nuclear’s adoption of Copilot agents drives fleet forward
Southern Nuclear is leading the charge in artificial intelligence integration, with employee-developed applications driving efficiencies in maintenance, operations, safety, and performance.
The tools span all roles within the company, with thousands of documented uses throughout the fleet, including improved maintenance efficiency, risk awareness in maintenance activities, and better-informed decision-making. The data-intensive process of preparing for and executing maintenance operations is streamlined by leveraging AI to put the right information at the fingertips for maintenance leaders, planners, schedulers, engineers, and technicians.
Masaoki Komata
Nuclear Science and Engineering | Volume 38 | Number 3 | December 1969 | Pages 193-204
Technical Paper | doi.org/10.13182/NSE69-A21154
Articles are hosted by Taylor and Francis Online.
The purpose of this paper is to present the mechanics of the derivation of Avery's coupled reactor kinetics equations, which have been given by his physical consideration. Firstly, the diffusion equation and its adjoint equation are expressed in the matrix form. Then the partial flux and the partial adjoint flux are defined explicitly. The neutron flux, introduced by Henry, is represented as an amplitude T(t) times a shape function ψ(r, t). The adiabatic approximation is adopted in the neutron-flux shape function. Using the commutation law (given in the Appendix) between the diffusion operator and its adjoint operator, Avery's equations are derived from the time-dependent diffusion equations for the partial adjoint flux. The assumptions introduced are; (a) the delayed-neutron fission spectrum is the same as the prompt-neutron fission spectrum, (b) the neutron-flux shape function is approximated by the adiabatic method, (c) the time constant of the amplitude T(t) is much smaller than the minimum time constant of the shape function ψ(r, t) at that instant. As the result of these assumptions, the delay time associated with the transfer of neutron does not appear explicitly in Avery's equations.