ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
August 2025
Latest News
From operator to entrepreneur: David Garcia applies outage management lessons
David Garcia
If ComEd’s Zion plant in northern Illinois hadn’t closed in 1998, David Garcia might still be there, where he got his start in nuclear power as an operator at age 24.
But in his ninth year working there, Zion closed, and Garcia moved on to a series of new roles—including at Wisconsin’s Point Beach plant, the corporate offices of Minnesota’s Xcel Energy, and on the supplier side at PaR Nuclear—into an on-the-job education that he augmented with degrees in business and divinity that he sought later in life.
Garcia started his own company—Waymaker Resource Group—in 2014. Recently, Waymaker has been supporting Holtec’s restart project at the Palisades plant with staffing and analysis. Palisades sits almost exactly due east of the fully decommissioned Zion site on the other side of Lake Michigan and is poised to operate again after what amounts to an extended outage of more than three years. Holtec also plans to build more reactors at the same site.
For Garcia, the takeaway is clear: “This industry is not going away. Nuclear power and the adjacent industries that support nuclear power—and clean energy, period—are going to be needed for decades upon decades.”
In July, Garcia talked with Nuclear News staff writer Susan Gallier about his career and what he has learned about running successful outages and other projects.
Masaoki Komata
Nuclear Science and Engineering | Volume 38 | Number 3 | December 1969 | Pages 193-204
Technical Paper | doi.org/10.13182/NSE69-A21154
Articles are hosted by Taylor and Francis Online.
The purpose of this paper is to present the mechanics of the derivation of Avery's coupled reactor kinetics equations, which have been given by his physical consideration. Firstly, the diffusion equation and its adjoint equation are expressed in the matrix form. Then the partial flux and the partial adjoint flux are defined explicitly. The neutron flux, introduced by Henry, is represented as an amplitude T(t) times a shape function ψ(r, t). The adiabatic approximation is adopted in the neutron-flux shape function. Using the commutation law (given in the Appendix) between the diffusion operator and its adjoint operator, Avery's equations are derived from the time-dependent diffusion equations for the partial adjoint flux. The assumptions introduced are; (a) the delayed-neutron fission spectrum is the same as the prompt-neutron fission spectrum, (b) the neutron-flux shape function is approximated by the adiabatic method, (c) the time constant of the amplitude T(t) is much smaller than the minimum time constant of the shape function ψ(r, t) at that instant. As the result of these assumptions, the delay time associated with the transfer of neutron does not appear explicitly in Avery's equations.