ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Education, Training & Workforce Development
The Education, Training & Workforce Development Division provides communication among the academic, industrial, and governmental communities through the exchange of views and information on matters related to education, training and workforce development in nuclear and radiological science, engineering, and technology. Industry leaders, education and training professionals, and interested students work together through Society-sponsored meetings and publications, to enrich their professional development, to educate the general public, and to advance nuclear and radiological science and engineering.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
DOE-EM awards $74.8M Oak Ridge support services contract
The Department of Energy’s Office of Environmental Management has awarded a five-year contract worth up to $74.8 million to Independent Strategic Management Solutions for professional support services at the Oak Ridge Office of Environmental Management site in Oak Ridge, Tenn.
Robert E. Rothe
Nuclear Science and Engineering | Volume 35 | Number 2 | February 1969 | Pages 267-276
Technical Paper | doi.org/10.13182/NSE69-A21142
Articles are hosted by Taylor and Francis Online.
Critical parameters are reported for an essentially unreflected system containing uranium solution and a fixed neutron poison. The uranium solution contained 450.8 g of uranium per liter. The uranium was enriched to 93.19 wt% 235U. The fixed poison was natural boron contained in stainless steel plates and comprised 1.02 wt% of the plates. The total boron content was varied on successive runs by changing the number of plates. The plates were arranged along parallel chords of the 106.6-cm-diam cylindrical experimental tank; they were approximately uniformly spaced. Three types of measurements are reported. The first type provides data on an unpoisoned slab. In the second type, the uranium solution height at criticality was less than the height of the plates (119 cm) and provided data on a poisoned solution cylinder. When the boron concentration was 16.41 g/liter, the cylinder was sub-critical even if infinitely long. The third type of measurement, where the critical uranium solution height exceeded the plate height, allowed an evaluation of the interaction between an unpoisoned slab and a highly poisoned region. The highest boron concentration measured was 20.62 g/liter. The experimental data are compared with results from neutron transport and diffusion computer codes. Computer results also provide asymptotic values for critical parameters not amenable to measurement because of apparatus limitations. Finally, the computer was used to extend the applicability of the data to more general systems.