ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Human Factors, Instrumentation & Controls
Improving task performance, system reliability, system and personnel safety, efficiency, and effectiveness are the division's main objectives. Its major areas of interest include task design, procedures, training, instrument and control layout and placement, stress control, anthropometrics, psychological input, and motivation.
Meeting Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
July 2025
Fusion Science and Technology
Latest News
NRC’s David Wright visits the Hill and more NRC news
Wright
The Nuclear Regulatory Commission is in the spotlight today for three very different reasons. First, NRC Chair David Wright was on Capitol Hill yesterday for his renomination hearing in front of the Senate’s Environment and Public Works Committee. Second, the NRC released its updated milestone schedules according to the Nuclear Energy Innovation and Modernization Act (NEIMA) and the executive orders signed by President Trump last month; and third, as reported by Reuters on Tuesday, 28 former NRC officials have condemned the dismissal of Commissioner Hanson earlier this month.
Renomination: EPW Committee chair Sen. Shelley Moore Capito (R., W.Va.) opened the hearing with a statement praising Wright’s experience and emphasized the urgency of stable leadership at the NRC.
“China is executing a rapid build-out of its nuclear industry,” Capito said. “The demand for clean, baseload power is skyrocketing as we position America to win the AI race.”
K. D. Lathrop
Nuclear Science and Engineering | Volume 134 | Number 3 | March 2000 | Pages 239-264
Technical Paper | doi.org/10.13182/NSE00-A2114
Articles are hosted by Taylor and Francis Online.
To investigate errors caused by angular differencing in approximating the streaming terms of the transport equation, five different approximations are evaluated for three test problems in one-dimensional spherical geometry. The following schemes are compared: diamond, special truncation error minimizing weighted diamond, linear continuous (the original SN scheme), linear discontinuous, and new quadratic continuous. To isolate errors caused by angular differencing, the approximations are derived from the transport equation without spatial differencing, and the resulting coupled ordinary differential equations (ODEs) are solved with an ODE solver. Results from the approximations are compared with analytic solutions derived for two-region purely absorbing spheres. Most of the approximations are derived by taking moments of the conservation form of the transport equation. The quadratic continuous approximation is derived taking the zeroth moment of both the transport equation and the first angular derivative of the transport equation. The advantages of this approach are described. In all of the approximations, the desirability is shown of using an initializing computation of the = -1 angular flux to correctly compute the central flux and of having a difference approximation that ensures this central flux is the same for all directions. The behavior of the standard discrete ordinates equations in the diffusion limit is reviewed, and the linear and quadratic continuous approximations are shown to have the correct diffusion limit if an equal interval discrete quadrature is used.In all three test problems, the weighted diamond difference approximation has smaller maximum and average relative flux errors than the diamond or the linear continuous difference approximations. The quadratic continuous approximation and the linear discontinuous approximation are both more accurate than the other approximations, and the quadratic continuous approximation has a decided edge over the linear discontinuous approximation in relative flux errors. The diamond, weighted diamond, and linear continuous approximations show quadratic system absorption and system leakage error reduction behavior with increasing N. The linear discontinuous and quadratic continuous approximations show fourth-order error reduction in these quantities. In one of the two-region test problems, the slope of the exact angular flux changes from nearly vertical to nearly horizontal at those points in the exterior region at which the interior region source just becomes visible. At these spatial points, errors in the continuous approximations propagate to each successive outgoing direction, leading to an oscillatory spatial error. The discontinuous approximation does not propagate these errors, although errors near the point of rapid slope change are larger than in the quadratic continuous approximation.