ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
DOE, General Matter team up for new fuel mission at Hanford
The Department of Energy's Office of Environmental Management (EM) on Tuesday announced a partnership with California-based nuclear fuel company General Matter for the potential use of the long-idle Fuels and Materials Examination Facility (FMEF) at the Hanford Site in Washington state.
According to the announcement, the DOE and General Matter have signed a lease to explore the FMEF's potential to be used for advanced nuclear fuel cycle technologies and materials, in part to help satisfy the predicted future requirements of artificial intelligence.
Robert S. Wick
Nuclear Science and Engineering | Volume 35 | Number 1 | January 1969 | Pages 118-126
Technical Paper | doi.org/10.13182/NSE69-A21120
Articles are hosted by Taylor and Francis Online.
Water-hammer theory is extended to the fuel assembly configuration of concentric annular fuel elements and flow passages. The analysis shows that due to the coupling of the hydraulic effects in adjacent coolant passages to each other through an elastic structure separating them, several modes of pressure wave propagation are possible. These compression (and rarefaction) waves travel at velocities less than the velocity of sound in the fluid depending on the dimensions of the fuel elements and flow passages. The existence of these compression and rarefaction waves traveling at different velocities leads to complex pressure disturbance patterns as a function of time, which may be of importance in fatigue analysis of the structure or possibly in determining whether or not voids could form as a result of the rarefaction waves. The analysis is general enough that it can be extended to include a wide variety of configurations when it is desirous to evaluate the effect of hydraulic pressure waves on fuel element performance.