ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 8–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Japan gets new U for enrichment as global power and fuel plans grow
President Trump is in Japan today, with a visit with new Prime Minister Sanae Takaichi on the agenda. Takaichi, who took office just last week as Japan’s first female prime minister, has already spoken in favor of nuclear energy and of accelerating the restart of Japan’s long-shuttered power reactors, as Reuters and others have reported. Much of the uranium to power those reactors will be enriched at Japan’s lone enrichment facility—part of Japan Nuclear Fuel Ltd.’s Rokkasho fuel complex—which accepted its first delivery of fresh uranium hexafluoride (UF₆) in 11 years earlier this month.
D. Sprevak and J. U. Koppel
Nuclear Science and Engineering | Volume 35 | Number 1 | January 1969 | Pages 80-87
Technical Paper | doi.org/10.13182/NSE69-A21115
Articles are hosted by Taylor and Francis Online.
A scattering kernel for liquid diphenyl has been determined from a model for the diphenyl molecule in which the carbon and hydrogen atoms make harmonic oscillations about their equilibrium position. The hindered translations and rotations of the molecule as a whole, which are characteristic of the liquid state, were considred as free translations of the molecule to which an effective mass was associated. A set of interatomic force constants which describes the vibrational motions of the molecule was found and then used for a complete normal-mode calculation. These force constants were calculated, using a modified least-squares technique which gives the best fit for the vibrational frequencies of the molecule measured by optical techniques. The amplitude vectors calculated from the computed set of force constants were used, together with the measured vibrational frequencies, to construct the weighted frequency spectrum used in the slow-neutron calculations. The scattering law was computed, in the harmonic approximation, by means of the code GASKET. The code FLANGE was used to interpolate the scattering law and to produce the scattering kernel. The total scattering cross section, the single differential cross section, and other neutron parameters were calculated and compared with experimental data with gratifying results.