ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Decommissioning & Environmental Sciences
The mission of the Decommissioning and Environmental Sciences (DES) Division is to promote the development and use of those skills and technologies associated with the use of nuclear energy and the optimal management and stewardship of the environment, sustainable development, decommissioning, remediation, reutilization, and long-term surveillance and maintenance of nuclear-related installations, and sites. The target audience for this effort is the membership of the Division, the Society, and the public at large.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
DOE-EM awards $74.8M Oak Ridge support services contract
The Department of Energy’s Office of Environmental Management has awarded a five-year contract worth up to $74.8 million to Independent Strategic Management Solutions for professional support services at the Oak Ridge Office of Environmental Management site in Oak Ridge, Tenn.
D. Sprevak and J. U. Koppel
Nuclear Science and Engineering | Volume 35 | Number 1 | January 1969 | Pages 80-87
Technical Paper | doi.org/10.13182/NSE69-A21115
Articles are hosted by Taylor and Francis Online.
A scattering kernel for liquid diphenyl has been determined from a model for the diphenyl molecule in which the carbon and hydrogen atoms make harmonic oscillations about their equilibrium position. The hindered translations and rotations of the molecule as a whole, which are characteristic of the liquid state, were considred as free translations of the molecule to which an effective mass was associated. A set of interatomic force constants which describes the vibrational motions of the molecule was found and then used for a complete normal-mode calculation. These force constants were calculated, using a modified least-squares technique which gives the best fit for the vibrational frequencies of the molecule measured by optical techniques. The amplitude vectors calculated from the computed set of force constants were used, together with the measured vibrational frequencies, to construct the weighted frequency spectrum used in the slow-neutron calculations. The scattering law was computed, in the harmonic approximation, by means of the code GASKET. The code FLANGE was used to interpolate the scattering law and to produce the scattering kernel. The total scattering cross section, the single differential cross section, and other neutron parameters were calculated and compared with experimental data with gratifying results.