ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 8–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Japan gets new U for enrichment as global power and fuel plans grow
President Trump is in Japan today, with a visit with new Prime Minister Sanae Takaichi on the agenda. Takaichi, who took office just last week as Japan’s first female prime minister, has already spoken in favor of nuclear energy and of accelerating the restart of Japan’s long-shuttered power reactors, as Reuters and others have reported. Much of the uranium to power those reactors will be enriched at Japan’s lone enrichment facility—part of Japan Nuclear Fuel Ltd.’s Rokkasho fuel complex—which accepted its first delivery of fresh uranium hexafluoride (UF₆) in 11 years earlier this month.
Shawky F. Nassar and Glenn Murphy
Nuclear Science and Engineering | Volume 35 | Number 1 | January 1969 | Pages 70-79
Technical Paper | doi.org/10.13182/NSE69-A21114
Articles are hosted by Taylor and Francis Online.
The diffusion parameters of light water have been measured by the pulsed-source method. The neutron bursts were produced from a Texas Neutron Generator by pulsing the ion source and using the 3H (d, n) 4He reaction. Neutrons were injected into spherical volumes of H2O and the decay constants of the neutrons were determined by means of an enriched BF3 miniature proportional counter. Neutron lifetime measurements were performed on small and large water samples with values of the geometric buckling from 0.035 to 0.655 cm−2. A harmonic analysis was conducted for the large geometries, while the waiting time method was used for the smaller ones. In the harmonic analysis, it appeared that a detector in a sphere is more sensitive to neutron fluctuation with time than it would be in a rectangular or cylindrical system. The diffusion parameters, D0 and C, were determined by fitting the decay constants to the equations and , where and are the geometric and the corresponding transport buckling, respectively. The second fit gave a lower standard deviation of C than did the first fit.