ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
July 2025
Fusion Science and Technology
Latest News
WIPP’s SSCVS: A breath of fresh air
This spring, the Department of Energy’s Office of Environmental Management announced that it had achieved a major milestone by completing commissioning of the Safety Significant Confinement Ventilation System (SSCVS) facility—a new, state-of-the-art, large-scale ventilation system at the Waste Isolation Pilot Plant, the DOE’s geologic repository for defense-related transuranic (TRU) waste in New Mexico.
P. Benoist
Nuclear Science and Engineering | Volume 34 | Number 3 | December 1968 | Pages 285-307
Technical Paper | doi.org/10.13182/NSE68-3
Articles are hosted by Taylor and Francis Online.
In a previous publication by Benoist, a simple and general formulation of the streaming effect in lattices was established which defines the diffusion coefficients by a suitable weighting of the mean-free-paths of the various media; this formulation introduced special types of collision probabilities initially calculated by an iteration technique. However, it appeared better to work with a closed formulation as the series of angular correlation terms evidenced a very slow convergence, especially for large channels. This approach requires the solution of the Boltzmann equation with particular types of sources. This solution is shown to be equivalent to the treatment of a cell in terms of some fictitious reaction. rates which are defined. The problem is essentially analogous to the calculation of the thermal utilization factor, an analogy that has been exploited as far as possible. Finally, by an adjustment on the corresponding void channel system, the treatment of fueled channels is made and a new method is proposed for the direct treatment of the latter case. The new expressions obtained for the diffusion coefficients are very simple and the numerical results obtained with them agree very well with reference calculations made by a variational method which is also exposed. Various auxiliary corrections are studied, and, finally, formulae for practical utilization are given in the Appendix.