ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Robotics & Remote Systems
The Mission of the Robotics and Remote Systems Division is to promote the development and application of immersive simulation, robotics, and remote systems for hazardous environments for the purpose of reducing hazardous exposure to individuals, reducing environmental hazards and reducing the cost of performing work.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
June 2025
Fusion Science and Technology
Latest News
The balance between safety and productivity: RIPB design
The American Nuclear Society’s Risk-informed, Performance-based Principles and Policy Committee (RP3C) held another presentation in its monthly Community of Practice (CoP) series on May 2.
F. Carvalho
Nuclear Science and Engineering | Volume 34 | Number 3 | December 1968 | Pages 224-236
Technical Paper | doi.org/10.13182/NSE68-A21088
Articles are hosted by Taylor and Francis Online.
The Karlsruhe rotating crystal time-of-flight spectrometer was used to measure the slow neutron scattering law of graphite in a range of energy transfer of 7 to 180 meV and momentum transfer of 1.5 to 16 Å−1. The graphite samples were heated to a temperature of 533°K, thereby increasing the probability of scattering with high energy transfer. The experimental data are corrected for multiple scattering in the sample using the incoherent approximation. The corrected data are in good agreement with calculated scattering law values. Large discrepancies between theory and previous experimental results are thus satisfactorily explained. The coherent nature of inelastic scattering in graphite is apparent in the data, especially in the region of lower energy and momentum transfers. The possibility of using the experimental results in this region directly to test and eventually to correct lattice model parameters is discussed. It is suggested that further measurements in this region with higher energy resolution might yield useful information. A phonon frequency distribution is extrapolated from the data and used to calculate several integral quantities. The values obtained are compared with previous results, both theoretical and experimental.