ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
DOE, General Matter team up for new fuel mission at Hanford
The Department of Energy's Office of Environmental Management (EM) on Tuesday announced a partnership with California-based nuclear fuel company General Matter for the potential use of the long-idle Fuels and Materials Examination Facility (FMEF) at the Hanford Site in Washington state.
According to the announcement, the DOE and General Matter have signed a lease to explore the FMEF's potential to be used for advanced nuclear fuel cycle technologies and materials, in part to help satisfy the predicted future requirements of artificial intelligence.
Charles D. Scott
Nuclear Science and Engineering | Volume 34 | Number 3 | December 1968 | Pages 214-223
Technical Paper | doi.org/10.13182/NSE68-A21087
Articles are hosted by Taylor and Francis Online.
The cosorption of water and carbon dioxide by molecular sieves is a potential method of removing these contaminants from the helium coolant of a nuclear gas cooled reactor. This system was experimentally investigated by both differential- and deep-bed tests at a temperature of 25°C; at pressures of 1 to 30 atm for differential tests and 10 to 30 atm for deep-bed tests; with gas flow rates of 0.0010 to 0.0138 g/(cm2 sec); and with inlet water or carbon dioxide concentrations of 3.4 × 10−8 to 9.3 × 10−7 g moles/cm3. These tests showed that the system could be described by the rate limiting step of intracrystalline diffusion with diffusion coefficients at 25°C of 1.92 × 10−10 cm2/sec for water and 3.11 × 10−10 cm2/sec for CO2. Sorbed CO2 was found to be irreversibly replaced by sorbed water, and the CO2 loading was dependent on water concentration. Differential equations were derived to describe the system of the cosorption of two interacting fluid species with Freundlich-type isotherms in a flowing fluid by a fixed bed of solids in which the sorption rate is controlled by intracrystalline diffusion. The set of differential equations was solved by a finite difference method for the case of water and carbon dioxide cosorption by molecular sieves. Generalized breakthrough curves for both water and CO2 were determined, and their use for design purposes is demonstrated.