ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
DOE, General Matter team up for new fuel mission at Hanford
The Department of Energy's Office of Environmental Management (EM) on Tuesday announced a partnership with California-based nuclear fuel company General Matter for the potential use of the long-idle Fuels and Materials Examination Facility (FMEF) at the Hanford Site in Washington state.
According to the announcement, the DOE and General Matter have signed a lease to explore the FMEF's potential to be used for advanced nuclear fuel cycle technologies and materials, in part to help satisfy the predicted future requirements of artificial intelligence.
J. Appel and B. Roos
Nuclear Science and Engineering | Volume 34 | Number 3 | December 1968 | Pages 201-213
Technical Paper | doi.org/10.13182/NSE68-A21086
Articles are hosted by Taylor and Francis Online.
An exact formulation is presented for the release of metallic fission products. Such radioactive atoms are created through fission processes inside the kernel of fuel particles. They can diffuse through the coating of a fuel particle and the surrounding charcoal matrix into the structural graphite of the reactor core. Some atoms traverse this graphite along internal surfaces and finally enter the coolant gas. To find the number of radioactive atoms released into the coolant gas, the diffusion equation in one space dimension is solved numerically taking into account as driving forces both the gradient of the chemical potential and that of the temperature field. The chemical potential is determined respectively by the Langmuir and Freundlich adsorption isotherms for small and large concentrations of metal atoms adsorbed at the highly active internal surfaces of charcoal and graphite. As an example, a parameter study of the release is presented for the most danagerous radioactive metallic isotope, 90Sr. The calculation of the release rate from a single fuel particle shows that the coating does not act as an effective diffusion barrier in this case. It is found that the structural graphite governs the release by virtue of its good adsorptive properties and its low diffusion constant. The results for the concentration profile, the mass current (or flux), and the release of 90Sr are highly sensitive to experimental information on diffusion and adsorption coefficients, in part because of the temperature-activated nature of adsorption and diffusion processes. Since the experimental variables are known with limited accuracy only, a parameter study of the 90Sr release is carried out, that is centered around the best available empirical values for diffusion and adsorption coefficients.