ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
DOE, General Matter team up for new fuel mission at Hanford
The Department of Energy's Office of Environmental Management (EM) on Tuesday announced a partnership with California-based nuclear fuel company General Matter for the potential use of the long-idle Fuels and Materials Examination Facility (FMEF) at the Hanford Site in Washington state.
According to the announcement, the DOE and General Matter have signed a lease to explore the FMEF's potential to be used for advanced nuclear fuel cycle technologies and materials, in part to help satisfy the predicted future requirements of artificial intelligence.
B. Grimeland and G. Seierstad
Nuclear Science and Engineering | Volume 23 | Number 4 | December 1965 | Pages 339-343
Technical Paper | doi.org/10.13182/NSE65-A21070
Articles are hosted by Taylor and Francis Online.
Small crystals of NaI(TI) were exposed to (D, D) neutrons slowed down in a paraffin moderator. The crystals were either enclosed in cadmium or placed inside a small cadmium box filled with the moderator material. The activities induced in iodine at different positions were measured. Now let the normalized activities obtained with the detectors enclosed in cadmium be A1 and let those obtained with the detectors placed inside the cadmium box be A2. It is assumed that the difference A2 − A1 is proportional to q(0.5 eV)-the slowing down density at an energy of 0.5 eV-and from the measured quantities A2(r) and A1(r) the slowing down age has been determined. Bare crystals were also irradiated and the induced activities measured. Let these activities be A3. Then the difference A3 − A1 will give a measure of the density of thermal neutrons and the migration area can be determined. With migration area and slowing down age known, the diffusion length of thermal neutrons could be determined too. The result obtained was L = (2.86 ± 0.16)cm compared to a calculated value of (2.60 ± 0.01)cm. The discrepancy might indicate that the neutron temperature in the paraffin is about 400 °K. Paraffin was used as moderator material because this greatly facilitated the experiment. It is never used as a reactor material and knowledge of the measured quantities may be of minor importance. The method, however, might possibly be of some interest.