ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Aerospace Nuclear Science & Technology
Organized to promote the advancement of knowledge in the use of nuclear science and technologies in the aerospace application. Specialized nuclear-based technologies and applications are needed to advance the state-of-the-art in aerospace design, engineering and operations to explore planetary bodies in our solar system and beyond, plus enhance the safety of air travel, especially high speed air travel. Areas of interest will include but are not limited to the creation of nuclear-based power and propulsion systems, multifunctional materials to protect humans and electronic components from atmospheric, space, and nuclear power system radiation, human factor strategies for the safety and reliable operation of nuclear power and propulsion plants by non-specialized personnel and more.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
DTE Energy studying uprate at Fermi-2, considers Fermi-3’s prospects
DTE Energy, the owner of Fermi nuclear power plant in Michigan, is considering an extended uprate for Unit 2 that would increase its 1,100-MW generation capacity by 150 MW.
J. H. Brindley
Nuclear Science and Engineering | Volume 23 | Number 4 | December 1965 | Pages 313-328
Technical Paper | doi.org/10.13182/NSE65-A21067
Articles are hosted by Taylor and Francis Online.
Flat-plate fuel-element surface temperatures in the Organic Moderated Reactor Experiment were monitored by 0.005-in. (0.013-cm)-diam chromel-alumel thermocouple wires, spot-welded to the stainless-steel fuel-plate surface. The thermocouple assembly, being exposed to the coolant stream, is subject to thermal-loading errors; as a result, thermocouple-calibration tests were performed in a forced-convection heat-transfer loop with Santowax O-M flowing over an electrically heated test plate containing typical thermocouple specimens. The tests were conducted under the following simulated reactor conditions: coolant temperatures from 300 to 600°F (149 to 316°C), coolant velocities from 10 to 20 ft/sec (3.1 to 6.1 m/sec), and heat fluxes ranging from 0.50 × 105 to 1.6 × 105 Btu/(h ft2) (15.77 to 50.46 W/cm2). Test results demonstrate that at reactor operating conditions, 600 °F organic coolant flowing at 17.5 ft/sec (5.34 m/sec), the observed fuel-plate surface temperature is 700 °F (371 °C), while, in reality, the actual surface temperature is 750 °F (399 °C). The thermocouple thermal-loading errors were found to be a function of the coolant Reynolds and Prandtl numbers. Heat flux had no effect on the calibration. Excellent agreement was obtained between the experimental and predicted (Dittus-Boelter) heat-transfer coefficients for the organic coolant. Thermocouple-calibration factors for correction of observed surface temperatures over a wide range of operating conditions, are presented as a function of the organic-coolant heat-transfer coefficient on the fuel-plate surface. An electrical-analogue model of a thermocouple assembly on the surface of an OMRE fuel element was constructed to: a) verify experimental results; b) study the effect of a fouling film on surface-temperature measurements; and c) provide an inexpensive means of calibrating surface-attached thermocouples on fuel plates for future use. Prediction of thermal-loading errors associated with this type of surface-temperature measurement by the use of existing mathematical results is discussed. Good agreement was obtained between the electrical-analogue results, the analytical predictions, and the experimental data. Film formation on the fuel plate and the thermocouple wire was observed to reduce the thermocouple-calibration factor by as much as 45%.