ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
DOE, General Matter team up for new fuel mission at Hanford
The Department of Energy's Office of Environmental Management (EM) on Tuesday announced a partnership with California-based nuclear fuel company General Matter for the potential use of the long-idle Fuels and Materials Examination Facility (FMEF) at the Hanford Site in Washington state.
According to the announcement, the DOE and General Matter have signed a lease to explore the FMEF's potential to be used for advanced nuclear fuel cycle technologies and materials, in part to help satisfy the predicted future requirements of artificial intelligence.
Harvey Amster
Nuclear Science and Engineering | Volume 21 | Number 2 | February 1965 | Pages 206-216
Technical Paper | doi.org/10.13182/NSE65-A21045
Articles are hosted by Taylor and Francis Online.
The spatially-independent spectrum of neutrons slowing down in an infinite medium with constant cross sections is calculated from both the Laplace transform exactitude (LTE) and a generalized synethtic kernel approximation (SKA). The fluxes are expressed as sums of exponentials in lethargy and compared asymptotically. For hydrogenous mixtures, two of an infinite number of terms from the LTE are non-oscillatory, both dominate all others at large lethargies, and one vanishes whenever hydrogen is a sole or missing constituent. The SKA yields a solution consisting of as many exponentials as isotopes present. The longest-lived terms are generally most accurate, but even the dominant one can be exact only if there is no absorption or if hydrogen is the sole moderator. For binary mixtures, both terms in the SKA fluxes are non-oscillatory, and the secondary one vanishes for the same concentrations that make the corresponding term in the LTE vanish. Analytic expressions for errors in the asymptotic flux from the SKAs are given as a function of lethargy, all the cross sections, and masses. For every instance observed, the exact asymptotic flux is bounded on different sides by values from the Greuling-Goertzel and Selengut-Goertzel SKAs.