ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fuel Cycle & Waste Management
Devoted to all aspects of the nuclear fuel cycle including waste management, worldwide. Division specific areas of interest and involvement include uranium conversion and enrichment; fuel fabrication, management (in-core and ex-core) and recycle; transportation; safeguards; high-level, low-level and mixed waste management and disposal; public policy and program management; decontamination and decommissioning environmental restoration; and excess weapons materials disposition.
Meeting Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
July 2025
Fusion Science and Technology
Latest News
NRC cuts fees by 50 percent for advanced reactor applicants
The Nuclear Regulatory Commission has announced it has amended regulations for the licensing, inspection, special projects, and annual fees it will charge applicants and licensees for fiscal year 2025.
Harvey Amster
Nuclear Science and Engineering | Volume 21 | Number 2 | February 1965 | Pages 206-216
Technical Paper | doi.org/10.13182/NSE65-A21045
Articles are hosted by Taylor and Francis Online.
The spatially-independent spectrum of neutrons slowing down in an infinite medium with constant cross sections is calculated from both the Laplace transform exactitude (LTE) and a generalized synethtic kernel approximation (SKA). The fluxes are expressed as sums of exponentials in lethargy and compared asymptotically. For hydrogenous mixtures, two of an infinite number of terms from the LTE are non-oscillatory, both dominate all others at large lethargies, and one vanishes whenever hydrogen is a sole or missing constituent. The SKA yields a solution consisting of as many exponentials as isotopes present. The longest-lived terms are generally most accurate, but even the dominant one can be exact only if there is no absorption or if hydrogen is the sole moderator. For binary mixtures, both terms in the SKA fluxes are non-oscillatory, and the secondary one vanishes for the same concentrations that make the corresponding term in the LTE vanish. Analytic expressions for errors in the asymptotic flux from the SKAs are given as a function of lethargy, all the cross sections, and masses. For every instance observed, the exact asymptotic flux is bounded on different sides by values from the Greuling-Goertzel and Selengut-Goertzel SKAs.