ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 8–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Japan gets new U for enrichment as global power and fuel plans grow
President Trump is in Japan today, with a visit with new Prime Minister Sanae Takaichi on the agenda. Takaichi, who took office just last week as Japan’s first female prime minister, has already spoken in favor of nuclear energy and of accelerating the restart of Japan’s long-shuttered power reactors, as Reuters and others have reported. Much of the uranium to power those reactors will be enriched at Japan’s lone enrichment facility—part of Japan Nuclear Fuel Ltd.’s Rokkasho fuel complex—which accepted its first delivery of fresh uranium hexafluoride (UF₆) in 11 years earlier this month.
T. W. T. Burnett and T. G. Williamson
Nuclear Science and Engineering | Volume 21 | Number 2 | February 1965 | Pages 201-205
Technical Paper | doi.org/10.13182/NSE65-A21044
Articles are hosted by Taylor and Francis Online.
The infinite multiplication factor, k∞ is one of the basic parameters of a sub-critical assembly. Usually, these assemblies are designed for maximum k∞ however, it is difficult to conduct laboratory experiments which yield a value of k∞ to reasonable accuracy. Common methods, such as the loading technique and exponential experiment, are of doubtful validity or require apparatus not always available. Pulsing techniques are widely accepted, but are difficult to apply to reflected assemblies. In this work, an alternative approach is used. It is based on the integration of the thermal-neutron flux over the equivalent infinite medium. Use of variations in the method with poisoned assemblies eliminates the need for accurate determinations of the source strength, the absolute thermal-flux calibration, and the epithermal parameters of the medium. The theory is general and can be applied with a minimum of equipment. The results obtained from this method (and its variations) were checked by pulse measurements on the bare assembly and by a four-factor formula calculation. All results agree to within 2%.