ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Human Factors, Instrumentation & Controls
Improving task performance, system reliability, system and personnel safety, efficiency, and effectiveness are the division's main objectives. Its major areas of interest include task design, procedures, training, instrument and control layout and placement, stress control, anthropometrics, psychological input, and motivation.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
DTE Energy studying uprate at Fermi-2, considers Fermi-3’s prospects
DTE Energy, the owner of Fermi nuclear power plant in Michigan, is considering an extended uprate for Unit 2 that would increase its 1,100-MW generation capacity by 150 MW.
Carl E. Crouthamel, Donald C. Stupegia, Peter Kafalas and Charles M. Stevens
Nuclear Science and Engineering | Volume 21 | Number 2 | February 1965 | Pages 179-185
Technical Paper | doi.org/10.13182/NSE65-A21041
Articles are hosted by Taylor and Francis Online.
In order to compare the breeding capabilities of the major nuclear fuels in the spectrum of a fast-breeder reactor, integral measurements have been made for the ratio of their capture and fission cross sections in the third loading of the First Experimental Breeder Reactor (EBR-I, Mark III). The capture-to-fission ratio has been determined as a function of position in the reactor for U233, U235 and Pu239. In addition, for U233 the ratio of (n, 2n) and fission cross sections has been determined. Further, for U238 the following cross-section ratios have been determined: σnγ(U238) / σƒ(U238)(X), where σf(X) refers to the fission cross sections of U233, U235 and Pu239. The capture-to-fission ratio results for the three primary fissile species have been compared with calculations based upon 16-group neutron diffusion theory using two different sets of monoenergetic neutron cross sections, and the agreement is good. The present data show that of the three major fissile species, Pu239 has the highest value of η-1, the maximum number of neutrons available for breeding, for each fissile nucleus consumed.