ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 8–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Japan gets new U for enrichment as global power and fuel plans grow
President Trump is in Japan today, with a visit with new Prime Minister Sanae Takaichi on the agenda. Takaichi, who took office just last week as Japan’s first female prime minister, has already spoken in favor of nuclear energy and of accelerating the restart of Japan’s long-shuttered power reactors, as Reuters and others have reported. Much of the uranium to power those reactors will be enriched at Japan’s lone enrichment facility—part of Japan Nuclear Fuel Ltd.’s Rokkasho fuel complex—which accepted its first delivery of fresh uranium hexafluoride (UF₆) in 11 years earlier this month.
Mildred J. Bradley, Jerry H. Goode, Leslie M. Ferris, James R. Flanary and Jacob W. Ullmann
Nuclear Science and Engineering | Volume 21 | Number 2 | February 1965 | Pages 159-164
Technical Paper | doi.org/10.13182/NSE65-A21039
Articles are hosted by Taylor and Francis Online.
Reactor irradiation of uranium monocarbide (UC) caused pronounced effects on its reactions with water and with aqueous solutions of NaOH, HCl, and H2SO4. Specimens irradiated to a burnup of 0.6 at.% or higher were essentially inert to water and to 6 M NaOH at 80°C. When the burnup was 0.06 at.% the specimens hydrolyzed, but the rates were much lower than those obtained with unirradiated specimens. The irradiation had little effect on the rates of reaction with HCl and H2SO4. When hydrolysis of irradiated UC occurred in water, 6 M NaOH, 6 M HCl, or 6 M H2SO4, the gases evolved contained less methane, less total volatile hydrocarbons and more hydrogen than the gases evolved from unirradiated UC under the same conditions. In general, with increasing burnup of the UC, the amount of hydrogen evolved increased while the amounts of methane and total carbon recovered in the gas decreased.