ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
AI at work: Southern Nuclear’s adoption of Copilot agents drives fleet forward
Southern Nuclear is leading the charge in artificial intelligence integration, with employee-developed applications driving efficiencies in maintenance, operations, safety, and performance.
The tools span all roles within the company, with thousands of documented uses throughout the fleet, including improved maintenance efficiency, risk awareness in maintenance activities, and better-informed decision-making. The data-intensive process of preparing for and executing maintenance operations is streamlined by leveraging AI to put the right information at the fingertips for maintenance leaders, planners, schedulers, engineers, and technicians.
A. H. El-Kateb
Nuclear Science and Engineering | Volume 134 | Number 1 | January 2000 | Pages 97-105
Technical Paper | doi.org/10.13182/NSE00-A2103
Articles are hosted by Taylor and Francis Online.
The 33- and 662-keV X rays and gamma rays from 137Cs and the 1173- and 1333-keV gamma rays from 60Co have been employed as single and dual beams to study the attenuation of applied materials. These materials are soil containing water, dextrose solutions, and solutions of lithium chloride, sodium chloride, and potassium chloride. In soil the measurements covered water content ranging from saturation to nearly dry points. For dextrose, the content ranged from 0.25 gcm-3 to zero. For the chloride solutions, the salt mass fraction was varied up to the ratio 0.1667. The setup geometry was arranged with a source-detector angle of 8.63 deg to allow good reception of the 33-keV line. The results were analyzed on the basis of the dependence of the absorption of intensity (intensities) on the content of the added component. The curves are fitted with concentration-dependent expansions, the coefficients of which are tabulated. It is concluded that soft X rays (33 keV) produce the most sensitive responses to concentrations. Correspondingly, a dual energy of 33 and 1250 keV (or 1333 keV) is the preferred combination to detect a desired component in a sample.