ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
August 2025
Latest News
From operator to entrepreneur: David Garcia applies outage management lessons
David Garcia
If ComEd’s Zion plant in northern Illinois hadn’t closed in 1998, David Garcia might still be there, where he got his start in nuclear power as an operator at age 24.
But in his ninth year working there, Zion closed, and Garcia moved on to a series of new roles—including at Wisconsin’s Point Beach plant, the corporate offices of Minnesota’s Xcel Energy, and on the supplier side at PaR Nuclear—into an on-the-job education that he augmented with degrees in business and divinity that he sought later in life.
Garcia started his own company—Waymaker Resource Group—in 2014. Recently, Waymaker has been supporting Holtec’s restart project at the Palisades plant with staffing and analysis. Palisades sits almost exactly due east of the fully decommissioned Zion site on the other side of Lake Michigan and is poised to operate again after what amounts to an extended outage of more than three years. Holtec also plans to build more reactors at the same site.
For Garcia, the takeaway is clear: “This industry is not going away. Nuclear power and the adjacent industries that support nuclear power—and clean energy, period—are going to be needed for decades upon decades.”
In July, Garcia talked with Nuclear News staff writer Susan Gallier about his career and what he has learned about running successful outages and other projects.
O. E. Dwyer, P. S. Tu
Nuclear Science and Engineering | Volume 21 | Number 1 | January 1965 | Pages 90-105
Technical Paper | doi.org/10.13182/NSE65-A21018
Articles are hosted by Taylor and Francis Online.
The results of an analytical study of bilateral heat transfer to liquid metals flowing turbulently through annuli are reported. The study was based on the assumptions of 1) uniform, though not necessarily equal, heat fluxes from the walls, 2) fully-established temperature and velocity profiles, and 3) no effect of transverse temperature variations on the physical properties of the liquid metal. The fraction, ξ, of the total heat delivered to the flowing stream which comes from the inner wall was varied from zero to unity. Also two special situations were treated: (A) equal heat fluxes from both walls, and (B) uniform but unequal heat fluxes at the walls, with equal wall temperatures at a given axial position along the channel. The results are presented in the form of Nusselt numbers for r2/r1 values from 1 to 7, Peclet numbers for 102 to 104, and ξ values from 0 to 1. The coefficient for the heat transferred from the inner wall goes to infinity at a certain value of ξ, which depends only on the ratio r2/r1. The same thing occurs for the coefficient for the outer walls, except at a different values of ξ. The interesting observation was made that at Pe = 6700, the Nusselt numbers for the following situations are all equal to about 35: 1) flow in a pipe, 2) flow between parallel plates with equal heat fluxes from both plates, 3) flow in any annulus with equal heat fluxes from the walls, with reference to the heat transferred from the outer wall, 4) flow in any annulus with a uniform heat flux from each wall and having equal wall temperatures at a given axial position, with reference to the heat transferred from the outer wall.