ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fuel Cycle & Waste Management
Devoted to all aspects of the nuclear fuel cycle including waste management, worldwide. Division specific areas of interest and involvement include uranium conversion and enrichment; fuel fabrication, management (in-core and ex-core) and recycle; transportation; safeguards; high-level, low-level and mixed waste management and disposal; public policy and program management; decontamination and decommissioning environmental restoration; and excess weapons materials disposition.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
June 2025
Fusion Science and Technology
Latest News
Canada clears Darlington to produce Lu-177 and Y-90
The Canadian Nuclear Safety Commission has amended Ontario Power Generation’s power reactor operating license for Darlington nuclear power plant to authorize the production of the medical radioisotopes lutetium-177 and yttrium-90.
G. C. Pomraning
Nuclear Science and Engineering | Volume 21 | Number 1 | January 1965 | Pages 62-78
Technical Paper | doi.org/10.13182/NSE65-A21016
Articles are hosted by Taylor and Francis Online.
A diffusion theory for the asymptotic transport scalar flux is derived from the monoenergetic transport equation in slab geometry. By allowing the scalar flux to be discontinuous at a material property and/or an external-source discontinuity, the theory is able to predict exact asymptotic transport-theory behavior for two standard halfspace problems. A supplementary diffusion-like theory is developed to treat the non-asymptotic flux. The total (asymptotic plus non-asymptotic) formalism yields a continuous scalar flux distribution and gives exact transport -theory leakage from a halfspace with a spatially-constant source. Numerous numerical comparisons indicate that the theory proposed here is significantly more accurate than classical (P1) diffusion theory. The complexity of both the asymptotic and non-asymptotic formalisms is comparable with that of the P1 method. Finally, the entire formalism is generalized to three dimensions in rectilinear- and curvilinear-coordinate systems.