ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
August 2025
Latest News
From operator to entrepreneur: David Garcia applies outage management lessons
David Garcia
If ComEd’s Zion plant in northern Illinois hadn’t closed in 1998, David Garcia might still be there, where he got his start in nuclear power as an operator at age 24.
But in his ninth year working there, Zion closed, and Garcia moved on to a series of new roles—including at Wisconsin’s Point Beach plant, the corporate offices of Minnesota’s Xcel Energy, and on the supplier side at PaR Nuclear—into an on-the-job education that he augmented with degrees in business and divinity that he sought later in life.
Garcia started his own company—Waymaker Resource Group—in 2014. Recently, Waymaker has been supporting Holtec’s restart project at the Palisades plant with staffing and analysis. Palisades sits almost exactly due east of the fully decommissioned Zion site on the other side of Lake Michigan and is poised to operate again after what amounts to an extended outage of more than three years. Holtec also plans to build more reactors at the same site.
For Garcia, the takeaway is clear: “This industry is not going away. Nuclear power and the adjacent industries that support nuclear power—and clean energy, period—are going to be needed for decades upon decades.”
In July, Garcia talked with Nuclear News staff writer Susan Gallier about his career and what he has learned about running successful outages and other projects.
John P. Church
Nuclear Science and Engineering | Volume 21 | Number 1 | January 1965 | Pages 49-61
Technical Paper | doi.org/10.13182/NSE65-A21015
Articles are hosted by Taylor and Francis Online.
The integral neutron-transport equation is solved for the space-dependent mono-energetic neutron density in a unit cell. By using step functions to represent the spatial dependence of the collision probabilities, one may rearrange the integro-differential transport equation in a special way such that the left-hand side contains only the leakage term and the term describing the total collision probability for the homogeneous medium of one region, k′, of the original problem. The Green's-function technique is then used to convert the integro-differential equation to an integral equation. Thus, although the resulting equation may be applied to a heterogeneous cell, the kernel of the equation depends only on the total collision probability in the particular region k′. Numerical results are presented for a two-region unit cell in slab geometry and compared with published results of DSN, PN double-PN and variational calculations. For unit cells that are of the order of two mean free paths or less in thickness, the zeroth-order spherical harmonic approximation for this method yields results comparable to very high order DSN, PN and double-PN calculations. Further, once the Green's function has been computed, additional cell calculations can be performed with relatively little additional computational effort.