ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
DOE, General Matter team up for new fuel mission at Hanford
The Department of Energy's Office of Environmental Management (EM) on Tuesday announced a partnership with California-based nuclear fuel company General Matter for the potential use of the long-idle Fuels and Materials Examination Facility (FMEF) at the Hanford Site in Washington state.
According to the announcement, the DOE and General Matter have signed a lease to explore the FMEF's potential to be used for advanced nuclear fuel cycle technologies and materials, in part to help satisfy the predicted future requirements of artificial intelligence.
Benjamin M. Ma, Glenn Murphy
Nuclear Science and Engineering | Volume 20 | Number 4 | December 1964 | Pages 536-546
Technical Paper | doi.org/10.13182/NSE64-A20997
Articles are hosted by Taylor and Francis Online.
The strain and stress distributions resulting from the combined effects of radiation, creep, and neutron flux levels in long externally and internally cooled tubular reactor fuel elements are determined analytically. Primary effects of thermal-cycling growth, irradiation growth, swelling, and creep of the fuel materials under operating conditions of power reactors are taken into consideration. An exact solution of the modified Bessel functions and an approximate solution (using a parabolic function) for neutron flux distribution are obtained from the simple diffusion equations. From the relation that the rate of heat generation is proportional to the neutron flux, the rate of volumetric heat generation in the fuel is found. Then the temperature distribution in the fuel is determined by using Poisson's equation of heat conduction. The equations of the displacement-strain relations, compatibility, incompressibility, stress equilibrium, yield criterion, and boundary conditions are established from some basic assumptions. The strain and stress equations for the fuel elements are derived. From the calculated results of a numerical example, the neutron flux levels, thermal and radiation dilatation, irradiation creep, thickness, and properties of the cladding material are found to have significant influences on the strain and stress distributions produced in the fuel element.