ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
Nuclear energy for maritime shipping and coastal applications
The Boston-based Deon Policy Institute has published a white paper that examines the applications of nuclear energy in the maritime sector—specifically, floating nuclear power plants and nuclear propulsion for commercial vessels. Topics covered include available technologies, preliminary cost estimates, and a status update on the regulatory framework.
Unique opportunity: The paper points out that nuclear energy has the potential to benefit the shipping industry with high energy efficiency, lower operating costs, and zero carbon emissions. The report has a special focus on Greece, a nation that controls about 20 percent of the global commercial fleet and thus has an opportunity to take a leading role in the transition to nuclear-powered shipping.
H. H. Ross, R. P. Gardner, J. W. Dunn, III
Nuclear Science and Engineering | Volume 20 | Number 4 | December 1964 | Pages 521-526
Technical Paper | doi.org/10.13182/NSE64-A20995
Articles are hosted by Taylor and Francis Online.
A new radiotracer technique for determining wear rates of selected automotive engine parts is described and demonstrated for piston rings. The technique uses Fe55 instead of Fe59 as the radiotracer. A liquid scintillation method for counting Fe55 is necessary since it decays by electron capture and emits only the Mn characteristic X-ray of 5.9 keV. A simple method for extracting the wear particles from the engine oil and getting the iron into the liquid scintillation mixture is described. Counting yields of 8 to 9% are obtained by the method. The Fe55 technique of wear measurement does not directly compete with the existing Fe59 technique since slightly lower sensitivity and longer sample preparation is required. However, the much longer half-life (2.6 years as compared to 45 days) and the lower radiation energy (5.9 keV as compared to over 1 MeV) allows the Fe55 technique to be used for long-term wear studies, for double tracer studies, and for studies of large engine parts.