ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Aug 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
August 2025
Latest News
Work advances on X-energy’s TRISO fuel fabrication facility
Small modular reactor developer X-energy, together with its fuel-developing subsidiary TRISO-X, has selected Clark Construction Group to finish the building construction phase of its advanced nuclear fuel fabrication facility, known as TX-1, in Oak Ridge, Tenn. It will be the first of two Oak Ridge facilities built to manufacture the company’s TRISO fuel for use in its Xe-100 SMR. The initial deployment of the Xe-100 will be at Dow Chemical Company’s UCC Seadrift Operations manufacturing site on Texas’s Gulf Coast.
Jeffrey Lewins
Nuclear Science and Engineering | Volume 20 | Number 4 | December 1964 | Pages 517-520
Technical Paper | doi.org/10.13182/NSE64-A20994
Articles are hosted by Taylor and Francis Online.
Two variational principles are discussed for time-dependent problems in reactor physics. The first is a stationary expression for the meter reading at a given time, the second a stationary expression for the integral of the meter reading up to a given time. Both the principles, unlike conventional Lagrangians extended to time-dependent nonconservative systems, have the advantage of requiring trial functions to be exact only at one end of the time interval of interest. Either may be generalized to account for nonlinearities. The second principle reduces to the first by making a suitable identification, while the first principle in turn reduces to a well-known and powerful variational principle for the steady state.