ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fusion Energy
This division promotes the development and timely introduction of fusion energy as a sustainable energy source with favorable economic, environmental, and safety attributes. The division cooperates with other organizations on common issues of multidisciplinary fusion science and technology, conducts professional meetings, and disseminates technical information in support of these goals. Members focus on the assessment and resolution of critical developmental issues for practical fusion energy applications.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
DTE Energy studying uprate at Fermi-2, considers Fermi-3’s prospects
DTE Energy, the owner of Fermi nuclear power plant in Michigan, is considering an extended uprate for Unit 2 that would increase its 1,100-MW generation capacity by 150 MW.
Raymond Gold
Nuclear Science and Engineering | Volume 20 | Number 4 | December 1964 | Pages 493-512
Technical Paper | doi.org/10.13182/NSE64-A20992
Articles are hosted by Taylor and Francis Online.
Activation measurements are utilized to determine approximate representations of neutron spectra in the form of orthonormal expansions. Two different methods, the Gram-Schmidt and least-squares expansions, are examined. The sensitivity of these methods to experimental error in the neutron cross sections is explored. The least-squares method proves generally superior to the Gram-Schmidt method in this application. The present computations imply that more accurate spectral information can be obtained from orthonormal expansions which employ fewer cross sections of high precision as opposed to many cross sections of moderate precision.