ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
Fusion Science and Technology
October 2025
Latest News
Amazon provides update on its Washington project with X-energy
A year ago this month, Amazon led a $500 million investment in X-energy, alongside Citadel founder Ken Griffin, the University of Michigan, and other investors. In addition to that financing, Amazon pledged to support the development of an initial four-unit, 320-MW project with Energy Northwest in Washington state.
F. D. Judge, P. B. Daitch
Nuclear Science and Engineering | Volume 20 | Number 4 | December 1964 | Pages 428-435
Technical Paper | doi.org/10.13182/NSE64-A20984
Articles are hosted by Taylor and Francis Online.
The one-dimensional (slab), one-velocity time-dependent transport equation has been investigated using a variational method employing flat spatial trial functions. A simple approximation is found for the variation of the asymptotic decay rate (α) with slab size for small slabs. As expected, little difference is found between the use of a single flat spatial flux trial function and a double stepped flux trial function for thin slabs. The method is then extended to the case of a convex body of arbitrary shape. It is shown that an estimate for α is given by the relation where Pc = first collision probability. For the slab case, an effective spatial buckling and an effective extrapolation distance consistent with the exact asymptotic decay constant were obtained. This extrapolation distance is approximately equal to the Milne problem value down to a scattering thickness of about 1.0 mean free path after which it rises to λs for the limiting case of zero thickness. Finally, asymptotic time decay rates based upon low-order PL and DPL approximations in slab geometry are determined either numerically or from the exact analytical solutions; a real eigenvalue may or may not exist depending on the boundary conditions. It is shown further that these low-order approximations yield erroneous time-dependent characteristics in the thin slab limit.