ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
Uranium prices reach highest level since February 2024
The end-of-January spot price for uranium was $94.28 per pound, according to uranium fuel provider Cameco. That was the highest spot price posted by the company since the $95.00 per pound it listed at the end of February 2024. Spot prices during 2025 ranged from a low of $64.23 per pound at the end of March to a high of $82.63 per pound at the end of September.
C. Jammes, R. N. Hwang
Nuclear Science and Engineering | Volume 134 | Number 1 | January 2000 | Pages 37-49
Technical Paper | doi.org/10.13182/NSE00-A2098
Articles are hosted by Taylor and Francis Online.
One reliable and convenient way of processing the cross sections in the resolved energy region is by use of the generalized pole representation, whereby the Doppler-broadening calculation can be carried out rigorously using the analytical approach. So far, its applications have been limited to cases with resonance parameters specified by the Reich-Moore formalism. Although such an approach can in principle be extended to all three remaining representations of resolved resonance parameters specified by the ENDF data format, there is no computational tool for handling such a task at present. Given that Breit-Wigner formalisms are probably the most widely used by any evaluated nuclear data library to represent cross sections, a special effort needs to be made to convert the single- and multilevel Breit-Wigner resonance parameters to pole parameters. The FORTRAN computer code BW2PR has been developed for this purpose. Extensive calculations have been performed to demonstrate that the proposed method ensures the conservation of the information contained originally in Breit-Wigner resonance parameters. This will make it possible to apply the exact Doppler-broadening method to a larger collection of nuclides.