ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Criticality Safety
NCSD provides communication among nuclear criticality safety professionals through the development of standards, the evolution of training methods and materials, the presentation of technical data and procedures, and the creation of specialty publications. In these ways, the division furthers the exchange of technical information on nuclear criticality safety with the ultimate goal of promoting the safe handling of fissionable materials outside reactors.
Meeting Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
July 2025
Fusion Science and Technology
Latest News
NRC cuts fees by 50 percent for advanced reactor applicants
The Nuclear Regulatory Commission has announced it has amended regulations for the licensing, inspection, special projects, and annual fees it will charge applicants and licensees for fiscal year 2025.
K. Shure
Nuclear Science and Engineering | Volume 19 | Number 3 | July 1964 | Pages 310-320
Technical Paper | doi.org/10.13182/NSE64-A20964
Articles are hosted by Taylor and Francis Online.
Neutron penetration in water and in iron/water shields has been calculated using a P-3 multigroup program. The thermal-neutron flux from a point fission source in water obtained from calculation and experiment agree to within 18% in the region between 15 and 140 cm, covering more than 9 decades of attenuation. The calculated neutron spectrum compares favorably in shape and magnitude with moments-method results out to 120 cm of water. The observed variations of the thermal-neutron flux in an iron/water shield are predicted by the P-3 program. Some of the differences between experiment and the predicted thermal flux within a thick iron region are due to the single-energy-group treatment in the calculations. Uncertainties in the high-energy cross sections for iron are of sufficient magnitude to account for differences between calculation and experiment noted in the water region following iron.