ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
3D-printed tool at SRS makes quicker work of tank waste sampling
A 3D-printed tool has been developed at the Department of Energy’s Savannah River Site in South Carolina that can eliminate months from the job of radioactive tank waste sampling.
K. Shure
Nuclear Science and Engineering | Volume 19 | Number 3 | July 1964 | Pages 310-320
Technical Paper | doi.org/10.13182/NSE64-A20964
Articles are hosted by Taylor and Francis Online.
Neutron penetration in water and in iron/water shields has been calculated using a P-3 multigroup program. The thermal-neutron flux from a point fission source in water obtained from calculation and experiment agree to within 18% in the region between 15 and 140 cm, covering more than 9 decades of attenuation. The calculated neutron spectrum compares favorably in shape and magnitude with moments-method results out to 120 cm of water. The observed variations of the thermal-neutron flux in an iron/water shield are predicted by the P-3 program. Some of the differences between experiment and the predicted thermal flux within a thick iron region are due to the single-energy-group treatment in the calculations. Uncertainties in the high-energy cross sections for iron are of sufficient magnitude to account for differences between calculation and experiment noted in the water region following iron.