ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
DTE Energy studying uprate at Fermi-2, considers Fermi-3’s prospects
DTE Energy, the owner of Fermi nuclear power plant in Michigan, is considering an extended uprate for Unit 2 that would increase its 1,100-MW generation capacity by 150 MW.
Henry H. Kramer and Werner H. Wahl
Nuclear Science and Engineering | Volume 22 | Number 3 | July 1965 | Pages 373-382
Technical Paper | doi.org/10.13182/NSE65-A20941
Articles are hosted by Taylor and Francis Online.
Metastable isomers of stable isotopes may be formed in a nuclear reactor by inelastic neutron scattering and photoexcitation of the stable isotopes, and by radiative neutron capture and (n,2n) reactions on neighboring stable isotopes. The relative importance of these reactions for the production of Ba137m, Cd111m, Se77m, and Sr87m was evaluated by the irradiation of normal and isotopically enriched samples of the elements in the mixed radiation field of the Union Carbide Research Reactor. Radiative neutron capture is the most important source of Cd111m, Se77m and Sr87m in samples of normal isotopic abundance. Inelastic neutron scattering is the prime contributor to the production of Ba137m and is of considerable importance in the production of Cd111m. The (n,2n) reaction appears to be significant only in the production of Ba137m. The formation of these isomers by photoexcitation by the gamma-ray flux associated with the reactor appears to be insignificant when compared with the production by the other three processes. The cross sections determined in these investigations are generally in good agreement with available published values. Reactions for which cross sections were determined and not found in the literature include: Ba137(n,n′)Ba137m, = 0.22b; Cd111 (n,n′) Cd111m, = 0.14b; Se77(n,n′)Se77m, = 0.60b;Sr87(n,n′)Sr87m, = 0.12b; Ba138(n,2n)Ba137m, = 2.0mb; and Cd112 (n,2n)Cd111m, = 0.35mb. The data indicate that, for short irradiation periods in the fluxes employed in these studies, the metastable isomers Ba137m, Cd111m, Se77m and Sr87m are the most sensitive activation-analysis indicators for these elements and give detection sensitivities in the low nanogram range.