ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Reactor Physics
The division's objectives are to promote the advancement of knowledge and understanding of the fundamental physical phenomena characterizing nuclear reactors and other nuclear systems. The division encourages research and disseminates information through meetings and publications. Areas of technical interest include nuclear data, particle interactions and transport, reactor and nuclear systems analysis, methods, design, validation and operating experience and standards. The Wigner Award heads the awards program.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
DTE Energy studying uprate at Fermi-2, considers Fermi-3’s prospects
DTE Energy, the owner of Fermi nuclear power plant in Michigan, is considering an extended uprate for Unit 2 that would increase its 1,100-MW generation capacity by 150 MW.
J. F. Proctor, I. W. Marine
Nuclear Science and Engineering | Volume 22 | Number 3 | July 1965 | Pages 350-365
Technical Paper | doi.org/10.13182/NSE65-A20939
Articles are hosted by Taylor and Francis Online.
A recent investigation established the technical feasibility and indicated the high degree of safety that could be afforded by the storage of high-level radioactive wastes in unlined vaults excavated in crystalline rock 1500 ft beneath the surface of the Savannah River Plant near Aiken, S. C. The crystalline rock at the proposed site is covered by 1000 ft of unconsolidated sediments conSisting predominantly of sand and clay. A virtually impermeable layer of clay separates the rock from the overlying sediments in which several prolific water-bearing zones occur. The separation of the waters above and below this clay layer is confirmed by their different chemical composition and by the presence of dissolved helium-bearing gas only in the water in the rocks beneath the clay. Based on geologic and hydrologic information obtained in an intensive drilling and testing program, upper limits on the rates of water movement through the crystalline rock are calculated to be 1.5 to 7 ft/year, depending upon the degree of fracturing of the rock. Comparable data on the unconsolidated sediments lead to a calculated maximum rate of water movement of 350 ft/year. The most significant driving force for the migration of radionuclides from the storage site is derived from the natural water movement, coupled with effects due to dispersion and ion exchange. Characteristics of the waste, heat generation, and radiolysis have, by contrast, only small effects on migration. Three barriers prevent migration of the radionuclides: the very low permeability of the rock in which the storage vault is located, the virtually impermeable clay layer separating the rock and sediments, and the ion exchange properties of the sediments. Anyone of these barriers is capable of confining the radionuclides well within the plant boundaries for a time much greater than the 600-year period required to render the wastes innocuous.