ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 8–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Japan gets new U for enrichment as global power and fuel plans grow
President Trump is in Japan today, with a visit with new Prime Minister Sanae Takaichi on the agenda. Takaichi, who took office just last week as Japan’s first female prime minister, has already spoken in favor of nuclear energy and of accelerating the restart of Japan’s long-shuttered power reactors, as Reuters and others have reported. Much of the uranium to power those reactors will be enriched at Japan’s lone enrichment facility—part of Japan Nuclear Fuel Ltd.’s Rokkasho fuel complex—which accepted its first delivery of fresh uranium hexafluoride (UF₆) in 11 years earlier this month.
G. C. Pomraning
Nuclear Science and Engineering | Volume 22 | Number 3 | July 1965 | Pages 328-338
Technical Paper | doi.org/10.13182/NSE65-A20937
Articles are hosted by Taylor and Francis Online.
An approximation to the transport equation is presented, which is capable of arbitrary accuracy and yields the exact transport-theory asymptotic behavior in all orders for any geometry. Anisotropic scattering is treated explicitly, and the inclusion of energy and time dependences is straightforward. The approximation, which is very similar to the usual spherical-harmonic (PN) method, is derived by introducing a new truncation scheme into the infinite set spherical-harmonic equations. This truncation method consists of assuming that the higher spherical-harmonic components, equated to zero in the PN method, can be related to lower components by assuming the angular distribution to be in an asymptotic distribution. The resulting approximation is very similar in structure to the PN approximation (in particular, it is no more complex) but has the added advantage of yielding exact asymptotic behavior.