ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
DTE Energy studying uprate at Fermi-2, considers Fermi-3’s prospects
DTE Energy, the owner of Fermi nuclear power plant in Michigan, is considering an extended uprate for Unit 2 that would increase its 1,100-MW generation capacity by 150 MW.
Ian Wall and Henri Fenech
Nuclear Science and Engineering | Volume 22 | Number 3 | July 1965 | Pages 285-297
Technical Paper | doi.org/10.13182/NSE65-A20933
Articles are hosted by Taylor and Francis Online.
The fuel management optimization of a nuclear power plant is separable from the over-all optimum design. It has weak interactions with the core design and poison management which may be expressed by constraints upon the maximum permissible fuel burnup and ratio of peak-to-average power density (power peaking). Each time the reactor becomes subcritical, a decision must be made as to which fuel should be discharged and replaced and to what degree rearrangement is advantageous. This is a multistage decision process whose objective is the minimum power cost over the plant life. A dynamic programing algorithm and a computer program have been developed to optimize the refueling policies of a single-enrichment, three-zone, 1000-MWe PWR core for a minimum unit power cost. The major assumptions necessary for this method are the representation of the fuel composition by the sole parameter, burnup, and the prediction of the system behavior by least-squares polynomial curves fitted to prior calculations. These approximations have been verified and their accuracy is about 3%. Many problems are displayed to demonstrate the application of the method. The cost figures given in the numerical examples are for illustration purposes only and may not reflect current manufacturers' and utilities' policies.