ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
DOE, General Matter team up for new fuel mission at Hanford
The Department of Energy's Office of Environmental Management (EM) on Tuesday announced a partnership with California-based nuclear fuel company General Matter for the potential use of the long-idle Fuels and Materials Examination Facility (FMEF) at the Hanford Site in Washington state.
According to the announcement, the DOE and General Matter have signed a lease to explore the FMEF's potential to be used for advanced nuclear fuel cycle technologies and materials, in part to help satisfy the predicted future requirements of artificial intelligence.
J. Dorning
Nuclear Science and Engineering | Volume 33 | Number 1 | July 1968 | Pages 81-92
Technical Paper | doi.org/10.13182/NSE68-A20920
Articles are hosted by Taylor and Francis Online.
The pulsed-neutron experiment fundamental mode discrete time-decay constant has been calculated as a function of system size for spherical light water assemblies using realistic H2O scattering models by the discrete-ordinates method. Comparison with experiment shows agreement to be good. The computed energy spectra and angular distributions of the fundamental mode neutron fluxes are discussed and physical interpretations of their behavior are proffered. The effect of including various orders of anisotropy in the scattering kernel is examined. Decay-constant calculations were also performed for a model that neglects chemical binding. The results are compared with those based on models that include binding (and are in good agreement with experiment). The effects of chemical binding in neutron thermalization are shown to be significant by this comparison.