ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Aerospace Nuclear Science & Technology
Organized to promote the advancement of knowledge in the use of nuclear science and technologies in the aerospace application. Specialized nuclear-based technologies and applications are needed to advance the state-of-the-art in aerospace design, engineering and operations to explore planetary bodies in our solar system and beyond, plus enhance the safety of air travel, especially high speed air travel. Areas of interest will include but are not limited to the creation of nuclear-based power and propulsion systems, multifunctional materials to protect humans and electronic components from atmospheric, space, and nuclear power system radiation, human factor strategies for the safety and reliable operation of nuclear power and propulsion plants by non-specialized personnel and more.
Meeting Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
July 2025
Fusion Science and Technology
Latest News
WIPP’s SSCVS: A breath of fresh air
This spring, the Department of Energy’s Office of Environmental Management announced that it had achieved a major milestone by completing commissioning of the Safety Significant Confinement Ventilation System (SSCVS) facility—a new, state-of-the-art, large-scale ventilation system at the Waste Isolation Pilot Plant, the DOE’s geologic repository for defense-related transuranic (TRU) waste in New Mexico.
J. Dorning
Nuclear Science and Engineering | Volume 33 | Number 1 | July 1968 | Pages 81-92
Technical Paper | doi.org/10.13182/NSE68-A20920
Articles are hosted by Taylor and Francis Online.
The pulsed-neutron experiment fundamental mode discrete time-decay constant has been calculated as a function of system size for spherical light water assemblies using realistic H2O scattering models by the discrete-ordinates method. Comparison with experiment shows agreement to be good. The computed energy spectra and angular distributions of the fundamental mode neutron fluxes are discussed and physical interpretations of their behavior are proffered. The effect of including various orders of anisotropy in the scattering kernel is examined. Decay-constant calculations were also performed for a model that neglects chemical binding. The results are compared with those based on models that include binding (and are in good agreement with experiment). The effects of chemical binding in neutron thermalization are shown to be significant by this comparison.