ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Aerospace Nuclear Science & Technology
Organized to promote the advancement of knowledge in the use of nuclear science and technologies in the aerospace application. Specialized nuclear-based technologies and applications are needed to advance the state-of-the-art in aerospace design, engineering and operations to explore planetary bodies in our solar system and beyond, plus enhance the safety of air travel, especially high speed air travel. Areas of interest will include but are not limited to the creation of nuclear-based power and propulsion systems, multifunctional materials to protect humans and electronic components from atmospheric, space, and nuclear power system radiation, human factor strategies for the safety and reliable operation of nuclear power and propulsion plants by non-specialized personnel and more.
Meeting Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
July 2025
Fusion Science and Technology
Latest News
WIPP’s SSCVS: A breath of fresh air
This spring, the Department of Energy’s Office of Environmental Management announced that it had achieved a major milestone by completing commissioning of the Safety Significant Confinement Ventilation System (SSCVS) facility—a new, state-of-the-art, large-scale ventilation system at the Waste Isolation Pilot Plant, the DOE’s geologic repository for defense-related transuranic (TRU) waste in New Mexico.
Z. M. Bartolome, R. W. Hockenbury, W. R. Moyer, J. R. Tatarczuk, R. C. Block
Nuclear Science and Engineering | Volume 37 | Number 1 | July 1969 | Pages 137-156
Technical Paper | doi.org/10.13182/NSE69-A20905
Articles are hosted by Taylor and Francis Online.
Neutron capture and transmission measurements have been carried out upon 182W, 183W, 184W, 186W, 90Zr, 91Zr, 92Zr, and 94Zr over the energy range from ∼150 eV to ≤100 keV at the Rensselaer Polytechnic Institute LINAC Laboratory. Many new resonances have been observed and many resonances, reported previously as singlets, have been resolved into doublets. Most of the resonances that previously eluded observation are assigned to p-wave neutrons. Pertinent resonance parameters have been extracted from the data, and the s-wave and the p-wave strength functions of tungsten and zirconium have been determined from these parameters. The values of the s-wave strength functions in units of 10−4 are: for 182W, 2.60 ± 0.54; for 183W, 2.41 ± 0.48 per spin state; for 184W, 3.0 ± 0.6; for 186W, 2.15 ± 0.46; for 90Zr, 2.0 ± 1.4; for 91Zr, 1.2 ± 0.4 per spin state; for 92Zr, 2.6 ± 1.5, and for 94Zr, 1.0 ± 0.8. The p-wave strength functions in units of 10−4 are: for the even-even tungsten isotopes, ; for 90Zr, 7 ± 4; for 91Zr, 3 ± 2 per spin state; for 92Zr, 7 ± 5, and for 94Zr, 4 ± 2.