ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
DOE, General Matter team up for new fuel mission at Hanford
The Department of Energy's Office of Environmental Management (EM) on Tuesday announced a partnership with California-based nuclear fuel company General Matter for the potential use of the long-idle Fuels and Materials Examination Facility (FMEF) at the Hanford Site in Washington state.
According to the announcement, the DOE and General Matter have signed a lease to explore the FMEF's potential to be used for advanced nuclear fuel cycle technologies and materials, in part to help satisfy the predicted future requirements of artificial intelligence.
A. J. H. Goddard, P. W. Johnson
Nuclear Science and Engineering | Volume 37 | Number 1 | July 1969 | Pages 127-136
Technical Paper | doi.org/10.13182/NSE69-A20904
Articles are hosted by Taylor and Francis Online.
Thermal-neutron diffusion lengths have been measured with an accuracy of typically ½% in aqueous absorbing solution contained in a tank adjacent to a reactor thermal column. Both pure water and boric acid solutions were used at 22.3 and 65°C, and solutions of cadmium and gadolinium salts at the lower temperature. Ten concentrations of each absorber were used. Two of the measured diffusion lengths for cadmium yield space eigenvalues which violate the (ΣT)min limit of Corngold. Slight diffusion cooling occurs in cadmium solutions in contrast to marked heating effects in boron and gadolinium solutions. Theoretical predictions of diffusion lengths have been obtained by a B2 solution of the transport equation. Four scattering models were used: the Nelkin model, Haywood model, and two further models consisting of modifications to each of these. The modifications highlight particular parts of the hydrogen-atom generalized frequency distribution. A Laguerre polynomial expansion technique is investigated but found to be unsuitable for the analysis of non-1/v poison data.