ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
3D-printed tool at SRS makes quicker work of tank waste sampling
A 3D-printed tool has been developed at the Department of Energy’s Savannah River Site in South Carolina that can eliminate months from the job of radioactive tank waste sampling.
A. Galati
Nuclear Science and Engineering | Volume 37 | Number 1 | July 1969 | Pages 30-40
Technical Paper | doi.org/10.13182/NSE69-A20896
Articles are hosted by Taylor and Francis Online.
A quasi-static method is proposed for evaluating spatial effects on nuclear reactor kinetics. The neutron flux shape is calculated approximately as an asymptotic solution of the two-group space-time diffusion equations, where delayed neutron behavior is included. Two iterative procedures are alternatively used according to the amount of reactivity involved. The first one operates until prompt criticality is reached. The second procedure replaces the first one as soon as the reactor goes superpromptcritical. The main feature of the approach adopted is the possibility of selecting an initial guess such that convergence is reached at the first iteration. The matter is then reduced to solving two eigenvalue problems. Theoretical and numerical comparisons with Henry's adiabatic model outline the main role of perturbed adjoint fluxes and correct neutron-flux shape (the second agent only for superpromptcritical excursions) in defining the generation time and reactivity. When compared with the exact solution, results of sample problems show substantial accuracy in the flux shape and amplitude. In subpromptcritical excursions, only the synthesis method is as accurate as the metastatic one and yields errors of few percent at the flux peak. In the reactivity range above prompt critical, differences between the exact results and the metastatic ones are unessential.